Skip to main content
Log in

A diffusion model for mesoderm induction in amphibian embryos

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

In this paper we try to answer the question whether diffusion is a possible mechanism to explain mesoderm induction in Amphibians. First the embryological data are discussed and a hypothesis for mesoderm formation is set forth. The blastula being essentially a hollow sphere, we assume that the induction mechanism in an embryo at the blastula stage can be simulated by diffusion-reaction processes on spherical surfaces. A model is constructed for the simple case when the source is held constant with respect to time, the decay proportional to the concentration and the diffusion coefficient a constant, From simulation we find a (best) value for the decay constant to be 6 × 10−5/sec and for the diffusion constant to be 0.24 × 10− 6 cm2/sec. The relation between the parameters is derived from an analytic solution for the diffusion process on a spherical surface with a continuously producing point source and the concentration proportional to the decay. The form and regulative properties of the steady concentration gradient are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balinsky, B. I. (1959). An electron microscopic investigation of the mechanisms of adhesion of the cells in a sea urchin blastula and gastrula. - Exp. Cell Res. 16, p. 429–433.

    Google Scholar 

  • Ban Holtfreter, H. (1965). Differentiation capacities of Spemann's organizer investigated in explants of diminishing size. - Thesis, University of Rochester, 252 pp.

  • Bonner, J. T. (1947). Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mould Dictyostelium discoideum. - J. exp. Zool. 106, p. 1–26.

    Google Scholar 

  • Boterenbrood, E. C. & P. D. Nieuwkoop (1973). The formation of the mesoderm in urodelean amphibians. V. Its regional induction by the endoderm. - Roux Arch. EntwMech. Organ. 173, p. 319–332.

    Google Scholar 

  • Caspar, D. L. D. & A. Klug (1962). Physical principles in the construction of regular viruses. - Cold Spr. Harb. Symp. Quant. Biol. 27, p. 1–24.

    Google Scholar 

  • Crank, J. (1976). Diffusion mathematics in medicine and biology. - Bull. Inst. Math. and its Appls, 12, p. 106–112.

    Google Scholar 

  • Crick, F. H. C. (1970). Diffusion in embryogenesis. - Nature, Lond. 225, p. 420–422.

    Google Scholar 

  • Gebhardt, D. O. E. & P. D. Nieuwkoop (1964). The influence of lithium on the competence of the ectoderm in Ambystoma mexicanum. - J. Embryol. exp. Morph. 12, p. 317–331.

    Google Scholar 

  • Hara, K. (1977). The cleavage pattern of the axolotl egg studied by cinematography and cell counting. - Roux Arch. Developm. Biol. 181, p. 73–87.

    Google Scholar 

  • Harrison, R. G. (1969). Harrison stages and description of the normal development of the spotted salamander, Amblystoma punetatum (Linn.). - In: S. Wilens, ed., Organization and development of the embryo, p. 44–66. - New Haven, Yale University Press.

    Google Scholar 

  • Howard, L. N. & N. Kopell (1974). Wave trains, shock fronts and transition layers in reaction-diffusion equations. - Proc. Symp. appl. Math. Am. Math. Soc. 8, p. 1–12.

    Google Scholar 

  • Keller, E. F. (1974). Mathematical aspects of bacterial chemotaxis. - Antibiot. Chemother. 19, p. 79–93.

    Google Scholar 

  • Koebke, J. (1974). Zur Frage der Differenzierungsfähigkeit der Margin alzonenbereiche früher Entwicklungsstadien von Ambystoma mexicanum. - Thesis, Univ. Köln, 90 pp.

  • Koshlyakov, N. S., M. M. Smirnow & E. B. Gliner (1964). Differential equations of mathematical physics. - Amsterdam, North Holland Publ. Comp., xvi + 701 pp.

    Google Scholar 

  • Lieb, W. R. & W. D. Stein (1971). The molecular basis of simple diffusion within biological membranes. - Curr. Top. Membr. Transp. 2, p. 1–39.

    Google Scholar 

  • Mahler, H. R. & E. H. Cordes (1966). Biological chemistry. - New York, Harper and Row, XV + 872 pp.

    Google Scholar 

  • Mercer, E. H. & L. Wolpert (1962). An electron microscope study of the cortex of the sea urchin (Psammechinus miliaris) egg. - Exp. Cell Res. 27, p. 1–13.

    Google Scholar 

  • Nakamura, O. & T. Matsuzawa (1967). Differentiation capacity of the marginal zone in the morula and blastula of Triturus pyrrhogaster. - Embryologia 9, p. 223–237.

    Google Scholar 

  • Nakamura, O. & K. Kishiyama (1971). Prospective fates of blastomeres at the 32 cell stage of Xenopus laevis embryos. - Proc. Japan Acad. 47, p. 407–412.

    Google Scholar 

  • Nakamura, O., H. Takasaki & M. Ishihara (1971). Formation of the organizer from combinations of presumptive ectoderm and endoderm. I. - Proc. Japan Acad. 47, p. 313–318.

    Google Scholar 

  • Nieuwkoop, P. D. (1969a). The formation of the mesoderm in urodelean amphibians. 1. Induction by the endoderm. - Roux Arch. EntwMech. Organ. 162, p. 341–373.

    Google Scholar 

  • Nieuwkoop, P. D. (1969b). The formation of the mesoderm in urodelean amphibians. II. The origin of the dorsoventral polarity of the mesoderm. - Roux Arch. EntwMech. Organ. 163, p. 298–315.

    Google Scholar 

  • Nieuwkoop, P. D. (1970). The formation of the mesoderm in urodelean amphibians. III. The vegetalizing action of the lithium ion. - Roux Arch. EntwMech. Organ 166, p. 105–123.

    Google Scholar 

  • Nieuwkoop, P. D. (1973). The organization centre of the amphibian embryo; its origin, spatial organization and morphogenetic action. - Advan. Morphogen. 10, p. 1–39.

    Google Scholar 

  • Pasteels, J. (1942). New observations concerning the maps of presumptive areas of the young amphibian gastrula (Ambystoma and Discoglossus). - J. exp. Zool. 89, p. 255–281.

    Google Scholar 

  • Robertson, A. & M. H. Cohen (1973). Control of developing fields. - Ann. Rev. of Biophys. and Bioengin. 1, p. 409–464.

    Google Scholar 

  • Rosen, R. (1970). Dynamical system theory in biology, Vol. I. - New York, Wiley Interscience, xiv + 302 pp.

    Google Scholar 

  • Rosen, R. (1972). Foundations of mathematical biology. Vol. II. - New York, Acad. Press, xviii + 330 pp.

    Google Scholar 

  • Smith, G. D. (1965). Numerical solutions of partial differential equations. - London, Oxford University Press, viii + 179 pp.

    Google Scholar 

  • Tiedemann, H. (1959). Ein Verfahren zur gleichzeitigen Gewinnung deuterencephaler und mesodermaler Induktionsstoffe aus Hühnerembryonen. - Z. Naturf. 14b, p. 610–611.

    Google Scholar 

  • Toivonen, S. (1953). Bone-marrow of the guinea-pig as a mesodermal inductor in implantation experiments with embryos of Triturus. - J. Embryol. exp. Morph., 1, p. 97–104.

    Google Scholar 

  • Veen, A. H. & A. Lindenmayen (1977). Diffusion mechanism for phyllotaxis. - Plant Physiol. 60, p. 127–139.

    Google Scholar 

  • Vening Meinesz, F. A. (1950). Kort overzicht der kartografie. - Groningen, Noordhof, 88 pp.

    Google Scholar 

  • Vogt, W. (1929). Gestaltungsanalyse am Amphibienkeim mit örtlicher Vitalfärbung. II. Gastrulation und Mesodermbildung bei Urodelen und Anuren. - Roux Arch. EntwMech. Organ. 120, p. 384–706.

    Google Scholar 

  • Yamada, T. (1939). Über bedeutungsfremde Selbstdifferenzierung der präsumptiven Rückenmuskulatur des Molchkeimes bei Isolation. - Okajimas Fol. Anat. Japon. 18, p. 565–568.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weyer, C.J., Nieuwkoop, P.D. & Lindenmayer, A. A diffusion model for mesoderm induction in amphibian embryos. Acta Biotheor 26, 164–180 (1977). https://doi.org/10.1007/BF00048425

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048425

Keywords

Navigation