Skip to main content

Effect of exogenous gibberellic acid, abscisic acid, and benzylaminopurine on epicotyl dormancy of cultured herbaceous peony embryos

Abstract

Epicotyl dormancy was broken in cultured peony (Paeonia lactiflora Pall.) embryos after topical application of agarose gels containing gibberellic acid, with optimum growth at 1.5 mM gibberellic acid. Addition of 100 μM abscisic acid to the medium resulted in complete inhibition of gibberellic acid-stimulated promotion of dormant epicotyls. Epicotyl dormancy was also broken in embryos by culture on media containing 1 or 10 μM benzylaminopurine. A highly significant increase in leaf number occurred when embryos were both cultured on medium containing benzylaminopurine and treated topically with gibberellic acid. Anatomical and morphological studies indicated that the increase in shoot growth was due to the development and growth of 1) buds formed at the cotyledonary node, 2) axillary buds, and 3) adventitious meristems originating from subepidermal parenchymatous tissue.

This is a preview of subscription content, access via your institution.

Abbreviations

ABA:

abscisic acid

BA:

N6-benzylaminopurine

DMSO:

dimethyl sulfoxide

GA3 :

gibberellic acid

LS:

Linsmaier and Skoog

References

  • Addicott FT & Lyon JL (1969) Physiology of abscisic acid and related substances. Ann. Rev. Plant Physiol. 20: 139–164

    Google Scholar 

  • Barton LV & Chandler C (1957) Physiological and morphological effects of gibberellic acid on epicotyl dormancy of tree peony. Contr. Boyce Thompson Inst. 19: 201–214

    Google Scholar 

  • Black M & Wareing PF (1955) Growth studies in woody species VII. Photoperiodic control of germination in Betula pubescens Ehrh. Physiol. Plant. 8: 300–316

    Google Scholar 

  • Bradbeer JW (1968) Studies in seed dormancy IV. The role of endogenous inhibitors and gibberellins in the dormancy and germination of Corylus avellana L. seeds. Planta 78: 266–276

    Google Scholar 

  • Buchheim JAT & Meyer MMJr. (1992) Micropropagation of peony. In: Bajaj YPS (Ed) Biotechnology in Agriculture and Forestry, Vol. 20 High-Tech and Micropropagation IV. (pp 269–285) Springer-Verlag Press, Heidelberg

    Google Scholar 

  • Carmer SG & Seif RD (1963) Calculation of orthogonal coefficients when treatments are unequally replicated and/or unequally spaced. Agron. J. 55: 387–389

    Google Scholar 

  • Durand M, Thévenot C & Côme D (1973) The influence of abscisic acid on germination and breaking of dormancy in apple embryos. C. R. Acad. Sci., Ser. D 277: 53–56

    Google Scholar 

  • Durand M, Thévenot C & Côme D (1975) Role des cotylédons dans la germination et la levée de dormance de l'axe a bryonnaire du pommier après traitement par l'acide abscissique. Physiol. Veg. 13: 603–610

    Google Scholar 

  • Frankland B & Wareing PF (1966) Hormonal regulation of seed dormancy in hazel (Corylus avellana L.) and Beech (Fagus sylvatica L.) J. Exp. Bot. 17: 596–611

    Google Scholar 

  • Griess JL & Meyer MM (1976) Dormancy and survival of perennial plants. Am. Peony Soc. Bull. 220: 21–24

    Google Scholar 

  • Hay JR (1962) Experiments on the mechanisms of induced dormancy in wild oats, Avena fatua L. Can. J. Bot. 40: 191–202

    Google Scholar 

  • Hollingsworth D (1970) Techniques in producing peony seedlings. Am. Peony Soc. Bull. 231: 39–42

    Google Scholar 

  • Hosoki T, Ando M, Kubara T, Hamada M & Itami M (1989) In vitro propagation of herbaceous peony (Paeonia lactiflora Pall) by a longitudinal shoot-split method. Plant Cell Rep. 8: 243–246

    Google Scholar 

  • Hsiao AI (1979) The effect of sodium hypochlorite and gibberellic acid on seed dormancy and germination of wild oats (Avena fatua). Can. J. Bot. 57: 1729–1734

    Google Scholar 

  • Hsiao AI & Quick WA (1985) Wild oats (Avena fatua L.) seed dormancy as influenced by sodium hypochlorite, moist storage and gibberellin A3. Weed Res. 25: 281–288

    Google Scholar 

  • Hsiao AI & Simpson GM (1971) Dormancy studies in seeds of Avena fatua. 7. The effects of light and variation in water regime on germination. Can. J. Bot. 49: 1347–1357

    Google Scholar 

  • Hundal PS & Khajuria HN (1979) Effect of GA3 and thiourea on seed germination of different varieties of peach. Indian J. Agric. Sci. 49: 417–419

    Google Scholar 

  • Hussein TM, Martin GC & Nishijima C (1985) Effects of temperature, chemical treatments and endogenous hormone content on peach seed germination and subsequent seedling growth. Sci. Hortic. 27: 63–73

    Google Scholar 

  • Krekler WH (1962) Peony culture, uses, and propagation. In: Wister JC (Ed) The Peony (pp 100–111). Am. Hortic. Soc., Washington D.C.

    Google Scholar 

  • Lebowitz RJ (1987) The heritability of seedling stage drought resistance in rape and its relationship to seedling root morphology. PhD Dissertation. University of Illinois, Urbana

  • LePage-Devigry T (1973) Influence de l'acide abscissique sur le développement des embryons de Taxus baccata L. cultivés in vitro. Z. Pflanzenphysiol. 70: 406–413

    Google Scholar 

  • Li Y, Wu D, Pan S, Xu S, Wei Z, Xu Z & Li X (1984) In vitro propagation of Paeonia suffruticosa. Kexue Tongbao 29: 1675–1678

    Google Scholar 

  • Lin JJ (1980) In vitro embryo and tissue culture studies in the herbaceous peony (Paeonia lactiflora Pall.) MS Thesis. University of Illinois, Urbana.

  • Lin JJ, Thomas JA & Meyer MM (1987) Tissue culture and embryoid formation in Paconia lactiflora Pall. Am. Peony Soc. Bull. 263: 24–30

    Google Scholar 

  • Linsmaier EM & Skoog F (1965) Organic growth factor requirements of tobacco tissue. Physiol. Plant. 18: 100–127

    Google Scholar 

  • Mehanna HT & Martin GC (1985) Effect of seed coat on peach seed germination. Sci. Hortic. 25: 247–254

    Google Scholar 

  • Meyer MM (1976) Culture of Paeonia embryos by in vitro techniques. Am. Peony Soc. Bull. 217: 32–35

    Google Scholar 

  • Milborrow BV (1974) The chemistry and physiology of abscisic acid. Ann. Rev. Plant Physiol. 25: 259–307

    Google Scholar 

  • Norton CR (1985) The use of gibberellic acid, ethephon and cold treatment to promote germination of Rhus typhina L. seeds. Sci. Hortic. 27: 163–169

    Google Scholar 

  • Shannon J & Kamp JR (1959) Trials of various possible propagation methods of herbaceous peonies. Ill. State Florists' Assoc. Bull. 197: 4–7

    Google Scholar 

  • Steel RGD & Torrie JH (1980) Principles and Procedures of Statistics (2nd ed) McGraw-Hill, New York (633 p)

    Google Scholar 

  • Thomas JA (1987) Hormonal regulation of epicotyl dormancy, anatomical studies, and tissue culture of Paeonia lactiflora Pall. MS Thesis. University of Illinois, Urbana

  • Tukey JW, Ciminera JL & Heyse JF (1985) Testing the statistical certainty of a response to increasing doses of a drug. Biometrics 41: 295–301

    Google Scholar 

  • Weidner S (1984) Role of gibberellins and cytokinins in regulation of germination during development and ripening of Triticale caryopses. Acta Soc. Bot. Pol. 53: 257–270

    Google Scholar 

  • Zigas RP & Coombe BG (1977) Seedling development in peach, Prunus persica (L.) Batsch. II. Effect of plant growth regulators and their possible role. Aust. J. Plant Physiol. 4: 359–369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buchheim, J.A.T., Burkhart, L.F. & Meyer, M.M. Effect of exogenous gibberellic acid, abscisic acid, and benzylaminopurine on epicotyl dormancy of cultured herbaceous peony embryos. Plant Cell Tiss Organ Cult 36, 35–43 (1994). https://doi.org/10.1007/BF00048313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048313

Key words

  • embryo culture
  • image analysis
  • plant growth regulators
  • seed germination
  • tissue culture