Skip to main content
Log in

Response of the terrestrial biosphere to global climate change and human perturbation

  • CO2 Enrichment: Biosphere-Atmosphere Exchange
  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Despite 20 years of intensive effort to understand the global carbon cycle, the budget for carbon dioxide in the atmosphere is unbalanced. To explain why atmospheric CO2 is not increasing as rapidly as it should be, various workers have suggested that land vegetation acts as a sink for carbon dioxide. Here, I examine various possibilities and find that the evidence for a sink of sufficient magnitude on land is poor. Moreover, it is unlikely that the land vegetation will act as a sink in the postulated warmer global climates of the future. In response to rapid human population growth, destruction of natural ecosystems in the tropics remains a large net source of CO2 for the atmosphere, which is only partially compensated by the potential for carbon storage in temperate and boreal regions. Direct and inadvertent human effects on land vegetation might increase the magnitude of regional CO2 storage on land, but they are unlikely to play a significant role in moderating the potential rate of greenhouse warming in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber, J. D., Nadelhoffer, K. J., Steudler, P. & Melillo, J. M. 1989. Nitrogen saturation in northern forest ecosystems. Bioscience 39: 378–386.

    Google Scholar 

  • Adams, R. M., Rosenzweig, C., Peart, R. M., Ritchie, J. T., McCarl, B. A., Glyer, J. D., Curry, R. B., Jones, J. W., Boote, K. J. & Allen, L. H. 1990a. Glebal climate change and US agriculture. Nature 345: 219–223.

    Google Scholar 

  • Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M. & Woodward, F. I. 1990b. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348: 711–714.

    Google Scholar 

  • Allen, L. H. 1990. Plant responses to rising carbon dioxide and potential interactions with air pollutants. J. Environ. Qual. 19: 15–34.

    Google Scholar 

  • Almendinger, J. C. 1990. The decline of soil organic matter, total N, and available water capacity following the late-Holocene establishment of jack pine on sandy Mollisols, north-central Minnesota. Soil Science 150: 680–694.

    Google Scholar 

  • Anderson, D. W. 1977. Early stages of soil formation on glacial till mine spoils in a semi-arid climate. Geoderma 19: 11–19.

    Google Scholar 

  • Bacastow, R. & Keeling, C. D. 1973. Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle. II. Changes from A. D. 1700 to 2070 as deduced from a geochemical model. In: Woodwell, G. M. & Pecan, E. V. (eds). Carbon and the Biosphere. pp. 86–135. CONF 72–0510. National Technical Information Service, Springfield, Va.

    Google Scholar 

  • Bazzaz, F. A. 1990. The response of natural ecosystems to the rising global CO2 levels. Ann. Rev. Ecol. Syst. 21: 167–196.

    Google Scholar 

  • Beke, G. J. 1990. Soil development in a 100-year-old dike near Grand Pre, Nova Scotia. Can. J. Soil Sci. 70: 683–692.

    Google Scholar 

  • Berner, R. A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. Amer. J. Sci. 282: 451–473.

    Google Scholar 

  • Birkeland, P. W. 1984. Soils and Geomorphology. Oxford University Press, Oxford

    Google Scholar 

  • Blevins, R. L., Thomas, G. W. & Cornelius, P. L. 1977. Influence of no-tillage and nitrogen fertilization on certain soil properties after 5 years of continuous corn. Agron. J. 69: 383–386.

    Google Scholar 

  • Botkin, D. B. & Simpson, L. G. 1990. Biomass of the North American boreal forest. Biogeochem. 9: 161–174.

    Google Scholar 

  • CES (Committee on Earth Sciences). 1991. Our changing planet: the FY 1991 U. S. Global Change Research Program. Office of Science and Technology Policy, Washington, D. C.

    Google Scholar 

  • Curtis, P. S., Drake, B. G., Leadley, P. W., Arp, W. J. & Whigham, D. F. 1989. Growth and senescence in plant communities exposed to elevated CO2 concentrations on an estuarine marsh. Oecologia 78: 20–26.

    Google Scholar 

  • Dalal, R. C. 1989. Long-term effects of no-tillage, crop residue, and nitrogen application on properties of a Vertisol. Soil Sci. Soc. Amer. J. 53: 1511–1515.

    Google Scholar 

  • Delcourt, H. R. & Harris, W. F. 1980. Carbon budget of the southeastern U. S. biota: Analysis of historical change in trend from source to sink. Science 210: 321–323.

    Google Scholar 

  • Detwiler, R. P. & Hall, C. A. S. 1988. Tropical forests and the global carbon cycle. Science 239: 42–47.

    Google Scholar 

  • Dick, W. A. 1983. Organic carbon, nitrogen, and phosphorus concentrations and pH in soll profiles as affeeted by tillage intensity. Soil Sci. Soc. Amer. J. 47: 102–107.

    Google Scholar 

  • Emanuel, W. R., Shugart, H. H. & Stevenson, M. P. 1985. Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Clim. Change 7: 29–43.

    Google Scholar 

  • Galloway, J. N. & Whelpdale, D. M. 1987. WATOX-86 overview and western North Atlantic ocean S and N atmospheric budgets. Global Biogeochem. Cycles 1: 261–281.

    Google Scholar 

  • Garrels, R. M., MacKenzie, F. T. & Hunt, C. 1975. Chemical Cycles and the Global Environment. W. Kaufmann, Los Altos, Ca.

    Google Scholar 

  • Gorham, E. 1991. Northern peatlands role in the carbon cycle and probable responses to climatic warming. Ecol. Applica. 1: 182–195.

    Google Scholar 

  • Graumlich, L. J. 1991. Subalpine tree growth, climate and increasing CO2: An assessment of recent growth trends. Ecology 72: 1–11.

    Google Scholar 

  • Grulke, N. E., Riechers, G. H., Oechel, W. C., Hjelm, U. & Jaeger, C. 1990. Carbon balance in tussock tundra under ambient and elevated atmospheric CO2. Oecologia 83: 485–494.

    Google Scholar 

  • Hall, C. A. S. & Uhling, J. 1991. Refining estimates of carbon released from tropical land use change. Can. J. For. Res. 21: 118–131.

    Google Scholar 

  • Havlin, J. L., Kissel, D. E., Maddux, L. D., Claassen, M. M. & Long, J. H. 1990. Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci. Soc. Amer. J. 54: 448–452.

    Google Scholar 

  • Houghton, J. T., Jenkins, G. T. & J. J., Ephraums (eds). 1990. Climate change: The IPCC Scientific Assessment. Cambridge University Press, Cambridge.

    Google Scholar 

  • Houghton, R. A., Boone, R. D., Fruci, J. R., Hobbie, J. E., Melillo, J. M., Palm, C. A., Peterson, B. J., Shaver, G. R., Woodwell, G. M., Moore, B., Skole, D. L. & Myers, N. 1987. The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of the global flux. Tellus 39B: 122–139.

    Google Scholar 

  • Houghton, R. A., Skole, D. L. & Lefkowitz, D. S. 1991. Changes in the landscape of Latin America between 1850 and 1985. II. Net release of CO2 to the atmosphere. Forest Ecol. Manage. 38: 173–199.

    Google Scholar 

  • Houghton, R. A. 1991. Release of carbon to the atmosphere from degradation of forests in tropical Asia. Can. J. Forest Res. 21: 132–142.

    Google Scholar 

  • Houghton, R. A. 1992. What is happening to forests? In Woodwell, G. M. & Ramakrishna, K. (eds). The Conservation and Utilization of World Forests. Yale University Press, New Have, CT., in press.

    Google Scholar 

  • Jenkinson, D. S. 1990. The turnover of organic carbon and nitrogen in soil. Phil. Trans. Roy. Soc, London: Biol. Sci. 329: 361–368.

    Google Scholar 

  • Jenkinson, D. S., Adams, D. E. & Wild, A. 1991. Model estimates of CO2 emissions from soil in response to global warming. Nature 351: 304–306.

    Google Scholar 

  • Johnson, W. C. & Sharpe, D. M. 1983. The ratio of total to merehantable forest biomass and its applieation te the giobal carbon budget. Can. J. Forest Ress. 13: 372–383.

    Google Scholar 

  • Keeney, D. R. 1980. Prediction of soil nitrogen availability in forest ecosystems: A literature review. Forest Sci. 26: 159–171.

    Google Scholar 

  • Kern, J. S. & Johnson, M. G. 1991. The impact of conservation tillage use on soil and atmospheric carbon in the contiguous United States. U.S. Environmental Protection Agency, Report 6000/3–91/056, Corvallis, Oregon.

    Google Scholar 

  • Kohlmaier, G. H., Brohl, H., Sire, E. O., Plochl, M. & Revelle, R. 1987. Modelling stimulation of plant aand ecosystem response to present levels of excess atmospheric CO2. Tellus 39B: 155–170.

    Google Scholar 

  • Lal, R. 1976. No-tillage effects on soil properties under different crops in Nigeria. Soil Sci. Soc. Amer. J. 40: 762–768.

    Google Scholar 

  • Leisman, G. A. 1957. A vegetation and soil chronosequence on the Mesabi iron range spoil banks. Ecol. Monogr. 27: 221–245.

    Google Scholar 

  • Lugo, A. E. & Brown, S. 1986. Steady state terrestrial ecosystems and the global carbon cycle. Vegetatio 68: 83–90.

    Google Scholar 

  • Lugo, A. E., Sanchez, M. J. & Brown, S. 1986. Land use and organic carbon content of some subtropical soils. Plant Soil 96: 185–196.

    Google Scholar 

  • Manabe, S. & Wetherald, R. T. 1987. Large-scale changes of soil wetness induced by an increase in atmospheric carbon dioxide. J. Atmos. Sci. 44: 1211–1235.

    Google Scholar 

  • Melin, J., Nommik, H., Lohm, U. & Flower-Ellis, J. 1983. Fertilizer nitrogen budget in a Scots pine ecosystem attained by using root-isolated plots and15N tracer technique. Plant Soil 74: 249–263.

    Google Scholar 

  • Mohren, G. M. J., Van den, Berg, J. & Burger, F. W. 1986. Phosphorus deficiency induced by nitrogen input in douglas fir in the Netherlands. Plant Soil 95: 191–200.

    Google Scholar 

  • Molofsky, J., Menges, E. S., Hall, C. A. S., Armentano, T. V. & Ault, K. A. 1984. The effects of land use alteration on tropical carbon exchange. In Veziroglu, T. N. (ed). The Biosphere: Problems and Solutions. pp. 181–194. Elsevier Scientific Publishers, Amsterdam.

    Google Scholar 

  • Peterson, B. J. & Melillo, J. M. 1985. The potential storage of carbon caused by eutrophication of the biosphere. Tellus 37B: 117–127.

    Google Scholar 

  • Prentice, K. C. & Fung, I. Y. 1990. The sensitivity of terrestrial carbon storage to climate change. Nature 346: 48–51.

    Google Scholar 

  • Ravel, A. & Ramanathan, V. 1989. Observational determination of the greenhouse effect. Science 342: 758–761.

    Google Scholar 

  • Reiners, W. A. 1973. A summary of the world carbon cycle and recommendations for critical research. In Woodwell, G. M. & Pecan, E. V. (eds). Carbon and the Biosphere. pp. 368–382. CONF 72–0510. National Technical Information Service, Springfield, VA.

    Google Scholar 

  • Robbins, C. S., Sauer, J. R., Greenberg, R. S. & Droege, S. 1989. Population declines in North American birds that migrate to the neotropics. Proc. Nat. Acad. Sci., USA 86: 7658–7662.

    Google Scholar 

  • Schiffman, P. M. & Johnson, W. C. 1989. Phytomass and detrital carbon storage during forest regrowth in the southeastern United States piedmont. Can. J. Forest Res. 19: 69–78.

    Google Scholar 

  • Schleser, G. H. 1982. The response of CO2 evolution from soils to global temperature changes. Z. Naturforsch. 37a: 287–291.

    Google Scholar 

  • Schlesinger, W. H. & Melack, J. M. 1981. Transport of organic carbon in the world's rivers. Tellus 33: 172–187.

    Google Scholar 

  • Schlesinger, W. H. 1986. Changes in soil carbon storage and associated properties with disturbance and recovery. In Trabalka, J. R. & Reichle, D. E. (eds). The Changing Carbon Cycle: A Global Analysis. pp. 194–220. Springer-Verlag, New York.

    Google Scholar 

  • Schlesinger, W. H. 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348: 232–234.

    Google Scholar 

  • Siegenthaler, U. & Oeschger, H. 1987. Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus 39B: 140–154.

    Google Scholar 

  • Strain, B. R. & Cure, J. D. (eds). 1985. Direct Effects of Increasing Carbon Dioxide on Vegetation. U. S. Department of Energy Report DOE/ER-0238, Washington, DC

  • Tans, P. P., Fung, I. Y. & Takahashi, T. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247: 1431–1438.

    Google Scholar 

  • Tissue, D. T. & Oechel, W. C. 1987. Response of Eriophorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra. Ecology 68: 401–410.

    Google Scholar 

  • Trabalka, J. R. (ed). 1985. Atmospheric Carbon Dioxide and the Global Carbon Cycle. U. S. Department of Energy, DOE/Er-0239, Washington, D. C.

    Google Scholar 

  • Van, Cleve, K., Oechel, W. C. & Hom, J. L. 1990. Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska. Can. J. Forest Res. 20: 1530–1535.

    Google Scholar 

  • Vitousek, P. M. 1991. Can planted forests counteract increasing atmospheric carbon dioxide? J. Environ. Qual. 20: 348–354.

    Google Scholar 

  • Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H. & Matson, P. A. 1986. Human appropriation of the products of photosynthesis. Bioscience 36: 368–373.

    Google Scholar 

  • Vitousek, P. M., Fahey, T., Johnson, D. W. & Swift, M. J. 1988. Element interactions in forest ecosystems: Succession, allometry and input-output budgets. Biogeochem 5: 7–34.

    Google Scholar 

  • Whittaker, R. H. & Likens, G. E. 1973. Carbon in the biota. In Woodwell, G. M. & Peca, E. V. (eds). Carbon and the Biosphere. pp. 281–300. CONF 72–0510. National Technical Information Service, Springfield, VA.

    Google Scholar 

  • Wood, C. W., Westfall, D. G. & Peterson, G. A. 1991. Soil carbon and nitrogen changes on initiation of no-till cropping systems. Soil Sci. Soc. Amer. J. 55: 470–476.

    Google Scholar 

  • Woodwell, G. M., Hobbie, J. E., Houghton, R. A., Melillo, J. M., Moore, B., Peterson, B. J. & Shaver, G. R. 1983. Global deforestation: Contribution to atmospheric carbon dioxide. Science 222: 1081–1086.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlesinger, W.H. Response of the terrestrial biosphere to global climate change and human perturbation. Vegetatio 104, 295–305 (1993). https://doi.org/10.1007/BF00048160

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048160

Keywords

Navigation