Skip to main content

Integrated tank cultivation of salmonids and Gracilaria chilensis (Gracilariales, Rhodophyta)

Abstract

Oncorhynchus kisutch, O. mykiss and Gracilaria chilensis cultivation in intensive tank systems is feasible. The environmental benefits associated with the development of integrated tank cultivation were established by analyzing previously published and unpublished data on fish production and food conversion efficiency, particle discharges in fish effluents, as well as biomass production, nutrient uptake efficiency data of Gracilaria, with special emphasis on ammonium. The results indicate that fish production can reach 30 kg m−3 during a production cycle, and food conversion can be maintained stably at 1.4 g food g fish−1 production during the entire cultivation period. The solid particle discharges can be as high as 2.1 g (dry) kg fish−1 day−1 during the spring and summer, when salmon cultivation reaches its highest densities. The nutrient that increases most in fish effluents is ammonium, reaching concentrations as high as 500 µg 1−1, also in spring and summer. Gracilaria production can reach production rates as high as 48.9 kg m−2 year−1 and is able to remove 50% of the dissolved ammonium in winter, increasing to 90–95% in spring. These results are integrated into an income-analysis model, adding the extra income for Gracilaria harvesting and internalizing the environmental benefits for a 100-ton salmon production unit, which indicates that an additional total revenue of over US$ 60 000, representing around 10% of the total income, is possible.

This is a preview of subscription content, access via your institution.

References

  • Anonymous, 1994. Anuario Estaístico de Pesca 1993. Servicio, Nacional de Pesca, Valparaíso, 190 pp.

  • Aspila, K. I., H. Agemian & A. S. Y. Chau, 1976. A semi-automated method for the determination of inorganic and total phosphate in sediments. Analyst 101: 187–197.

    Google Scholar 

  • Avila, M. & M. Seguel, 1993. An overview of seaweed resources in Chile. J. appl. Phycol. 5: 133–139.

    Google Scholar 

  • Beveridge, M. C. M., 1984. Cage and pen fish farming. Carrying capacity models and environmental impacts. FAO Fish Tech. Pap. 255: 1–133.

    Google Scholar 

  • Bidwell, R. G. S., J. McLachlan & N. D. Lloyd, 1985. Tank cultivation of Irish moss, Chondrus crispus Stackh. Bot, mar. 28: 87–97.

    Google Scholar 

  • Boeuf, G., H. Kossmann & A. Medina, 1992. Le développement de la salmoniculture au Chile en 1992. La Pisciculture Francaise 109: 5–29.

    Google Scholar 

  • Buschmann, A. H., D. A. López & A. Medina, 1993. Costos y tecnologías para minimizar el impacto ambiental. Ambiente y Desarrollo 9: 71–75.

    Google Scholar 

  • Buschmann, A. H., R. Westermeier & C. A. Retamales, 1995. Cultivation of Gracilaria in the seabottom in southern Chile: a review. J. appl. Phycol. 7: 291–301.

    Google Scholar 

  • Buschmann, A. H., O. A. Mora, P. Gómez, M. Böttger, S. Buitano, C. Retamales, P. A. Vergara & A. Gutierrez, 1994. Gracilaria chilensis outdoor tank cultivation in Chile: use of land-based salmon culture effluents. Aquacult. Engin. 13: 283–300.

    Google Scholar 

  • Carlsson, P. & E. Granéli, 1993. Availability of humic bound nitrogen for coastal phytoplankton. Estuar., coast. Shelf Sci. 36: 433–447.

    Google Scholar 

  • Cohen, I. & A. Neon, 1991. Ulva lactuca biofilters for marine fishponds effluents. Bot. mar. 34: 475–482.

    Google Scholar 

  • Colt, J. & B. Watten, 1988. Applications of pure oxygen in fish culture. Aquacult. Engin. 7: 397–441.

    Google Scholar 

  • Edvardsen, B., F. Moy & E. Paasche, 1990. Hemolytic activity extracts of Chrysochromulina polylepis grown at different levels of selenite and phosphate. In E. Granéli, B. Sundström, E. Edler & D. Andersson (eds), Toxic Marine Phytoplankton. Elsevier, New York: 284–289.

    Google Scholar 

  • Enell, M., 1987. Environmental impact of cage fish farming with special reference to phosphorus and nitrogen loadings. Comm. Meet Int. Conn. Explor. Sea, C.M.-ICES/F44, Ref. MEQC.

  • Fivelstad, S., 1988. Waterflow requirements for salmonids in singlepass and semi-closed land-based seawater and freshwater systems. Aquacult. Engin. 7: 183–200.

    Google Scholar 

  • Folke, C. & N. Kautsky, 1988. The role of ecosystems for a sustainable development of aquaculture. Ambio 18: 234–243.

    Google Scholar 

  • Folke, C. & N. Kautsky, 1992. Aquaculture with its environment: prospects for sustainability. Ocean coast. Mgmt. 17: 5–24.

    Google Scholar 

  • Folke, C., N. Kautsky & M. Troell, 1994. The cost of eutrophication from salmon farming: implications for policy. J. envir. Mgmt. 40: 173–182.

    Google Scholar 

  • Gowen, R. J. & N. B. Bradbury, 1987. The ecological impact of salmonid farming in coastal waters: a review. Oceanogr. mar. Biol. Annu. Rev. 25: 563–575.

    Google Scholar 

  • Gowen, R. J., D. P. Weston & A. Ervik, 1991. Aquaculture and the benthic environment. In C. B. Cowey and C. Y. Cho (eds), Nutritional Strategies and Aquaculture Waste. University of Guelph, Ontario.

    Google Scholar 

  • Granéli, E., P. Carlsson, P. Olsson, B. Sundström, W. Granéli & O. Lindahl, 1989. From anoxia to fish poisoning: the last ten years of phytoplankton blooms in Swedish marine waters. In E. M. Cosper, V. M. Bricelj & E. J. Carpenter (eds), Novel Phytoplankton Blooms-Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Springer Verlag, New York: 407–428.

    Google Scholar 

  • Haglund, K. & M. Pedersén, 1993. Outdoor pond cultivation on the subtropical marine red alga Gracilaria tenuistipitata in brackish water in Sweden. Growth, nutrient uptake, co-cultivation with rainbow trout and epiphyte control. J. appl. Phycol. 5: 271–284.

    Google Scholar 

  • Hall, P. O. J., L. G. Andersson, O. Holby, S. Kollberg & M.-O. Samulesson, 1990. Chemical fluxes and mass balances in a marines fish cage farm. I. Carbon. Mar. Ecol. Prog. Ser. 61: 61–73.

    Google Scholar 

  • Hall, P. O. J., O. Holby, S. Kollberg & O.-M. Samuelsson, 1992. Chemical fluxes and mass balances in a marines fish cage farm IV. Nitrogen. Mar. Ecol. Prog. Ser. 89: 81–91.

    Google Scholar 

  • Handy, R. D. & M. G. Poxton, 1993. Nitrogen pollution in mariculture: toxicity and excretion of nitrogenous componds by marine fish. Rev. Fish Biol. Fish. 3: 205–241.

    Google Scholar 

  • Harlin, M. M., B. Thorne-Miller & B. G. Thursby, 1979. Ammonium uptake by Gracilaria sp. (Florideophyceae) and Ulva lactuca (Chlorophyceae) in closed system fish culture. In A. Jensen & J. R. Stein (eds), Proc. IXth Int. Seaweed Symp. Science Press, Princeton, NJ: 285–293.

    Google Scholar 

  • Holby, O. & P. O. J. Hall, 1991. Chemical fluxes and mass balances in a marine cage farm. II. Phosphorus. Mar. Ecol. Prog. Ser. 70: 263–272.

    Google Scholar 

  • López, D. A., A. H. Buschmann & M. L. González, 1988. Efectos del use de las zonas costeras por prácticas de acuicultura. Medio Ambiente 9: 42–54.

    Google Scholar 

  • Martinez, L. A., 1994. Uso de efluentes de salmonfdeos para el cultivo de Gracilaria chilensis en estanques: Rendimineto y calidad de agar. Thesis, Universidad de Los Lagos, Osomo, Chile, 80 pp.

    Google Scholar 

  • Medina, A., N. Pardo, C. O. Vargas, J. C. Uribe & A. H. Buschmann, 1993. Un estudio comparativo del cultivo de Oncorhynchus kisutch W. en estanques costeros y balsas jaulas en el sur de Chile. Rev. Biol. Mar., Valparaíso 28: 247–259.

    Google Scholar 

  • Neori, A., I. Cohen & H. Gordin, 1991. Ulva lactuca biofilters for marine fish-pond effluents. II. Growth rate, yield and C:N ratio. Bot. mar. 34: 483–489.

    Google Scholar 

  • Penczak, T., W. Galicka, M. Molinski, E. Kusto & M. Zalewski, 1982. The enrichment of a mesotrophic lake by carbon, phosphorus and nitrogen from cage aquaculture of rainbow trout, Salmo gairdneri. J. appl. Ecol. 19: 371–393.

    Google Scholar 

  • Persson, G., 1986. Kasseodling av regnbåge; Närsaltsemissoner och miljö vid tre odlinslägen längst smålamdskusten. Rapport 3215. Nat. Swed. Envir. Prot. Bd., Solna: 1–42.

    Google Scholar 

  • Phillips, M. J., M. C. M. Beveridge & J. F. Muir, 1986. Waste output and environmental effects of rainbow trout cage culture. Comm. meet. Int. Count. Explor. Sea, C.M.-ICES/F:21, Maricult. Comm., Sess W 18 pp.

  • Rosenthal, H., D. Weston, R. Gowen & E. Black, 1988. Report of the ad-hoc study group on "Environmental impact of mariculture". Cooperative Research, Report No. 154, 83 pp.

  • Shpigel, M. & R. A. Blaylock, 1991. The Pacific oyster, Crassostrea gigas, as a biological filter for a marine fish aquaculture pond. Aquaculture 92: 187–197.

    Google Scholar 

  • Seymour, E. A. & A. Bergheim, 1991. Towards a reduction of pollution from intensive aquaculture with reference to the farming of salmonids in Norway. Aquacult. Engin. 10: 73–88.

    Google Scholar 

  • Solorzano, L., 1969. Determination of ammonia in waters by the phenolhydrochlorite method. Limnol. Oceanogr. 14: 799–801.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Fish. Res. Bd. Can. Bull. 167: 1–310.

    Google Scholar 

  • Ugarte, R. & B. Santelices, 1992. Experimental tank cultivation of Gracilaria chilensis in central Chile. Aquaculture 101: 7–16.

    Google Scholar 

  • Vandermeulen, H. & H. Gordin, 1990. Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems: mass culture and treatment of effluent. J. appl. Phycol. 2: 363–374.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buschmann, A.H., Troell, M., Kautsky, N. et al. Integrated tank cultivation of salmonids and Gracilaria chilensis (Gracilariales, Rhodophyta). Hydrobiologia 326, 75–82 (1996). https://doi.org/10.1007/BF00047789

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047789

Key words

  • biofilter
  • environmental sustainability
  • Gracilaria
  • salmonids
  • seaweeds
  • tank cultivation