Skip to main content
Log in

Characterizing optimality in mathematical programming models

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

This paper is a survey of basic results that characterize optimality in single- and multi-objective mathematical programming models. Many people believe, or want to believe, that the underlying behavioural structure of management, economic, and many other systems, generates basically ‘continuous’ processes. This belief motivates our definition and study of optimality, termed ‘structural’ optimality. Roughly speaking, we say that a feasible point of a mathematical programming model is structurally optimal if every improvement of the optimal value function, with respect to parameters, results in discontinuity of the corresponding feasible set of decision variables. This definition appears to be more suitable for many applications and it is also more general than the usual one: every optimum is a structural optimum but not necessarily vice versa. By characterizing structural optima, we obtain some new, and recover the familiar, optimality conditions in nonlinear programming.

The paper is self-contained. Our approach is geometric and inductive: we develop intiution by studying finite-dimensional models before moving on to abstract situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams, R. A. and Kerzner, L.: A simplified test for optimality, J. Optim. Theory Applic. 25 (1978), 161–170.

    Google Scholar 

  2. Avriel, M.: Nonlinear Programming: Analysis and Methods, Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

    Google Scholar 

  3. Bank, B., Guddat, J., Klatte, D., Kummer, B., and Tammer, K.: Nonlinear Parametric Optimization, Akademie-Verlag, Berlin, 1982.

    Google Scholar 

  4. Barbu, V. and Precupanu, Th.: Convexity and Optimization in Banach Spaces, Sijthoff and Noordhoff, Alphen aan de Rijn, The Netherlands, 1978.

    Google Scholar 

  5. Ben-Israel, A. and Mond, B.: First order optimality conditions for generalized convex functions: A feasible directions approach, Utilitas Math. 25 (1984), 249–262.

    Google Scholar 

  6. Ben-Israel, A., Ben-Tal, A., and Zlobec, S.. Optimality in Nonlinear Programming: A Feasible Directions Approach, Wiley-Interscience, New York, 1981.

    Google Scholar 

  7. Ben-Tal, A.: Second-order and related extremality conditions in nonlinear programming, J. Optim. Theory Applic. 31 (1980).

  8. Ben-Tal, A. and Zowe, J.: Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems, Math. Program. 24 (1982), 70–91.

    Google Scholar 

  9. Berge, C.: Topological Spaces, Oliver and Boyd, London, 1963.

    Google Scholar 

  10. Borwein, J. M. and Wolkowicz, H.: Characterization of optimality without constraint qualification for the abstract convex program, Math. Progr. Study 19 (1982), 77–100.

    Google Scholar 

  11. Carpentier, J., Girard, R., and Scano, E.: Voltage collapse proximity indicators computed from an optimal power flow in Proceedings of the 8th PSCC Conference, Helsinki (1984) pp. 671–688.

  12. Charnes, A. and Cooper, W. W.: Management Models and Industrial Applications to Linear Programming, Wiley, New York, 1961.

    Google Scholar 

  13. Charnes, A. and Cooper, W. W.: Constrained extremization models and their use in developing system measures, in M. D.Mesarović, (ed.) Views on General Systems Theory, Wiley, New York, 1964, pp. 61–88.

    Google Scholar 

  14. Charnes, A. and Zlobec, S.: Stability of efficiency evaluations in data envelopment analysis, Zeit. Operations Research, Series A: Theorie (forthcoming).

  15. Clarke, F. H.. Generalized gradients and applications. Trans. AMS 205 (1975) 247–262.

    Google Scholar 

  16. Clarke, F. H.: Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

    Google Scholar 

  17. Cojocaru, I.: Regions de stabilité dans la programmation linéaire, An. Univ. Bucuresti Mat. 34 (1985), 12–21.

    Google Scholar 

  18. Craven, B. D.: On quasidifferentiable optimization, J. Austral. Math. Soc. (Series A) 41 (1980), 64–78.

    Google Scholar 

  19. Craven, B. D.: Invex functions and constrained local minima, Bull. Austral. Math. Soc. 24 (1981) 357–366.

    Google Scholar 

  20. Craven, B. D., Glover, B. M., and Zlobec, S.: On minimization subject to cone constraints, Numer. Funct. Anal. Optim. 6 (1983), 363–378.

    Google Scholar 

  21. Demyanov, V. F. and Vasiliev, L. V.: Nondifferentiable Optimization, Nauka, Moscow, 1981 (in Russian).

    Google Scholar 

  22. Deutsch, F., Pollus, W., and Singer, I.: On set-valued metric projections, Duke Math. J. 40 (1988), 213–221.

    Google Scholar 

  23. El-Hodiri, M. A.: The Karush characterization of constrained extrema of functions of a finite number of variables, UAR Ministry of Treasury Research Memorandum, Series A, No. 3 (1967).

  24. Fiacco, A. V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York, 1983.

    Google Scholar 

  25. Fiacco, A. V. and Kyparisis, J.: Computable bounds on parametric solutions of convex problems, Math. Progr. 40 (1988), 213–221.

    Google Scholar 

  26. Gal, T., Linear parametric programming: A brief survey, Math. Progr. Study 21 (1984), 43–68.

    Google Scholar 

  27. Gauvin, J., Directional derivative for the value function in mathematical programming, Proc. Summer School: Nonsmooth Optimization and Related Topics, Erice, Sicily, 1988 (To appear).

    Google Scholar 

  28. Gauvin, J. and Janin, R.: Directional behaviour of optimal solutions in nonlinear mathematical programming, Math. Op. Res. (1988) (Fortheoming).

  29. Geoflrion, A. M.: Proper efficiency and the theory of vector maximization, J. Math. Anal. Appli. 22 (1968), 618–630.

    Google Scholar 

  30. Giannessi, F.: Theorems of the alternative and optimality conditions, J. Optim. Theory Applic. 42 (1984), 331–365.

    Google Scholar 

  31. Girsanov, N. V.: Lectures on Mathematical Theory of Extrema Problems, Moscow University Press, 1970 (in Russian). English translation: Lecture notes in Economics and Mathematical Systems 67, Springer-Verlag, New York, 1972.

  32. Guddat, J., Jongen, H. Th., and Rueckmann, J.: On stability and stationary points in nonlinear optimization, J. Austral. Math. Soc., Series B 28 (1986), 36–56.

    Google Scholar 

  33. Hanson, M. A., On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Applic. 80 (1981), 545–550.

    Google Scholar 

  34. Hanson, M. A. and Mond, B.: Further generalizations of convexity in mathematical programming, J. Informat. Optim. Sci. 3 (1982), 25–32.

    Google Scholar 

  35. Hestenes, M. R.: Optimization Theory: The Finite Dimensional Case, Wiley, New York, 1975.

    Google Scholar 

  36. Hettich, R. and Jongen, H. Th.: On first and second order conditions for local optima for optimization problems in finite dimensions, Meth. Op. Res. 23 (1977), 82–97.

    Google Scholar 

  37. Hiriart-Urruty, J. B.: The approximate first order and second order directional derivative for a convex function, in J. P.Cecconi and J. P.Zolezzi, (eds.), Mathematical Theories of Optimization, Lecture Notes in Mathematics, Vol. 979, Springer-Verlag, New York, 1983.

    Google Scholar 

  38. Hogan, W. W.: Point-to-set maps in mathematical programming, SIAM Rev. 15 (1973), 591–603.

    Google Scholar 

  39. Homenyuk, V. V.: Elements of the Theory of Multi-Objective Optimization, Nauka, Moscow, 1983 (in Russian).

    Google Scholar 

  40. Huang, S.: Regions of stability in mathematical programming models, M.Sc. Thesis, Concordia University, Montreal, September 1988.

    Google Scholar 

  41. Huang, S. and Zlobec, S.: New regions of stability in input optimization, Aplikace Matematiky (1988) (forthcoming).

  42. Ioffe, A. D.: Necessary and sufficient conditions for a local minimum. I: A reduction theorem and first order conditions, SIAM J. Control Optim. 17 (1979) 245–250.

    Google Scholar 

  43. Ivanović, V.: Rules for calculating the required number of transport vehicles, Vojno-Ekonomski Glasnik 2 (No. 1–3) (1940), 1–10 (in Serbo-Croatian).

    Google Scholar 

  44. John, F.: Extremum problems with inequalities as subsidiary conditions, in K. O.Friedricks, O. E.Neugebauer and J. J.Stoker (eds.), Courant Anniversary Volume, Wiley Interscience, New York, 1948.

    Google Scholar 

  45. Jongen, H. Th., Jonker, P., and Twilt, F.: On one-parameter families of sets defined by (in)equality constraints, Nieuw Arch. Wiskunde xxx (1982), 307–322.

    Google Scholar 

  46. Klatte, D.: On the lower semicontinuity of optimal sets in convex parametric optimization, Math. Program. Studies 10 (1979), 104–109.

    Google Scholar 

  47. Krasnov, M. I., Makarenko, G. I., and Kiselev, A. I.: Problems and Exercises in the Calculus of Variations, Mir Publishers, Moscow, 1984.

    Google Scholar 

  48. Kuhn, H. W.: Nonlinear programming: A historical view, in R. W. Cottle and C. E. Lemke (eds.) Nonlinear Programming, SIAM-AMS Proceedings, Vol. IX, Providence, Rhode Island, 1976.

  49. Kuhn, H. W. and Tucker, A. W.: Nonlinear programming, in J. Neymann (ed.) Proc. Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 1951, pp. 481–492.

  50. Kyparisis, J.: Optimal value function characterizations in nonlinear programming, Technical Report, Department of Decision Sciences and Information Systems, Florida International University, Miami, 1987.

    Google Scholar 

  51. Lemaréchal, C.: Constructing bundle methods for convex optimization, in J. B. Hiriart-Urruty (ed.) Fermat Days 85: Mathematics for Optimization, Elsevier (1986) pp. 201–240.

  52. Lemaréchal, C.: An introduction to the theory of nonsmooth optimization, Optimization 17 (1986), 827–858.

    Google Scholar 

  53. Lewis, A. and Borwein, J.: Partially finite convex programming, Internal Report, Dalhousle University, 1988.

  54. Lusternik, L. A. and V. I.Sobolev: Elements of Functional Analysis, Nauka, Moscow, 1965 (in Russian).

    Google Scholar 

  55. Mangasarian, O.: Nonlinear Programming, McGraw-Hill, New York, 1969.

    Google Scholar 

  56. Martić, Lj.: Characterization of complete efficiency in a special problem of multi-criterion hyperbolic programming, Economic Analysis and Workers' Management 2(18) (1984), 171–174.

    Google Scholar 

  57. Martin, D. H.: On the continuity of the maximum in parametric linear programming, J. Optim. Theory Applic. 17 (1975), 205–210.

    Google Scholar 

  58. Martin, D. H.: The essence of invexity, J. Optim. Theory and Applic. 47 (1985), 65–76.

    Google Scholar 

  59. Martos, B.: Nonlinear Programming: Theory and Methods, American Elsevier, New York, 1975.

    Google Scholar 

  60. Massam, H. and Zlobec, S.: Various definitions of the derivative in mathematical programming, Math. Program. 7 (1974), 144–161. Addendum, Ibid. 14 (1978), 108–111.

    Google Scholar 

  61. Nahum, C.: Second order sensitivity analysis, PhD. Thesis, Department of Mathematics and Statistics McGill University, 1988.

  62. Osyczka, A.: Multicriteria Optimization in Engineering with Fortran Programs, Ellis Horwood, Chichester, England, 1984.

    Google Scholar 

  63. Pareto, V. V.: Cours d'Economic Politique, Rouge, Lausanne, Switzerland, 1896.

    Google Scholar 

  64. Penot, J. P.: Calcul sous differential et optimisation, J. Funct. Anal. 27 (1978), 248–276.

    Google Scholar 

  65. Petrié, J. and Zlobec, S.: Nonlinear Programming. Naučna, Knjiga, Belgrade, 1983 (in Serbo-Croatian).

    Google Scholar 

  66. Podinovski, V. V.: Applieation of the maximization procedure of the basic local criterion to solving the problems of vector optimization, Control Systems, 6, Novosibirsk (in Russian).

  67. Pshenichnyi, B. N. and Hachatryan, R. A.: Constraints of equality type in nonsmooth optimization problems, Sov. Math. Dokl. 26 (1982), 659–662.

    Google Scholar 

  68. Robinson, S.: Stability theory for systems of inequalities. Part I: Linear systems SIAM J. Numer. Anal. 12 (1975), 754–769.

    Google Scholar 

  69. Rockafellar, R. T.: Generalized derivatives and subgradients of nonconvex functions, Canad. J. Math. 32 (1980), 257–280.

    Google Scholar 

  70. Saks, S.: Theory of the Integral, Hafner, New York, 1973.

    Google Scholar 

  71. Salukvadze, M. E.: Vector-Valued Optimization Problems in Control Theory, Academic Press, New York, 1979.

    Google Scholar 

  72. Schaible, S. and Ziemba, W. T. (eds.): Generalized Concavity in Optimization and Economics, Academic Press, New York, 1981.

    Google Scholar 

  73. Semple, J. and Zlobec, S.: On a necessary condition for stability in perturbed linear and convex programming, Zeit, Operations Research, Series A: Theorie, 31 (1987) 161–172.

    Google Scholar 

  74. Smith, D. R.: Variational Methods in Optimization, Prentice-Hall, Englewood Cliffs New Jesery, 1974.

    Google Scholar 

  75. Van Rooyen, M. and Zlobec, S.: A complete characterization of optimal economic systems with respect to stable perturbations, TWISK 550 (August 1987), to be published.

  76. Van Rooyen, M., Sears, M., and Zlobec, S.: Constraint qualifications in input optimization, J. Austral. Math. Soc., Series B (1988, forthcoming).

  77. Vukadinović, S.: Two rules of colonel Vlastimir Ivanović for calculating the required number of transport vehicles, in Proc. Yugoslav Symposium on Operations Research, Herceg Novi, 1984, pp. 23–25 (in Serbo-Croatian).

  78. Ward, D. E. and Browein, J. M.: Nonsmooth calculus in finite dimensions, SIAM J. Control 25 (1987), 1312–1340.

    Google Scholar 

  79. Wei, Q.-L.: Stability in mathematical programming in the sense of lower semi-continuity and continuity, J. Qufu Teachers College 1 (1981) (in Chinese).

  80. Weir, T. and Mond, B.: Duality for generalized convex programming without a constraint qualification, Utilitas Math. 31 (1985), 232–242.

    Google Scholar 

  81. Wolkowicz, H.: Method of reduction in convex programming, J. Optim. Theory Applic. 40 (1983), 349–378.

    Google Scholar 

  82. Zidaroiu, C.: Regions of stability for random decision systems with complete connections, An. Univ. Bucuresti Mat. 34 (1985), 87–97.

    Google Scholar 

  83. Zlobec, S.: Regions of stability for ill-posed convex programs, Aplikace Matematiky 27 (1982), 176–191.

    Google Scholar 

  84. Zlobec, S.: Two characterizations of Pareto minima in convex multicriteria optimization, Aplikace Matermatiky 29 (1984), 342–349.

    Google Scholar 

  85. Zlobec, S.: Input optimization: I. Optimal realizations of mathematical models, Math. Program. 31 (1985), 245–268.

    Google Scholar 

  86. Zlobec, S.: Characterizing an optimal input in perturbed convex programming, Math. Program. 25 (1983), 109–121; Corrigendum, Ibid. 35 (1986), 368–371.

    Google Scholar 

  87. Zlobec, S.: Input optimization: III. Optimal realizations of multi-objective models, Optimization 17 (1986), 429–445.

    Google Scholar 

  88. Zlobec, S.: Topics in input optimization, TWISK 543 (July 1987). Invited paper presented at the International Symposium on the Occasion of Professor A. Charnes' 70th Birthday, University of Texas at Austin, October 14–16, 1987.

  89. Zlobec, S.: Survey of input optimization, Optimization 18 (1987), 309–348.

    Google Scholar 

  90. Zlobec, S. and Craven, B.: Stabilization and calculation of the minimal index set of binding constraints in convex programming, Math. Op. Stat., Series: Optim. 12 (1981), 203–220.

    Google Scholar 

  91. Zlobec, S. and Jacobson, D. H.: Minimizing an arbitrary function subject to convex constraints, Utilitas Math. 17 (1980), 239–257.

    Google Scholar 

  92. Zlobec, S., Gardner, R., and Ben-Israel, A.: Regions of stability for arbitrarily perturbed convex programs, in A. V.Fiacco (ed.) Mathematical Programming with Data Perturbations, Dekker, New York, 1981, pp. 69–89.

    Google Scholar 

  93. Zlobec, S.: Structural optima in nonlinear programming, in J.Guddat et al. (eds.), Advances in Mathematical Optimization, Series: Mathematical Research 45, Akademie-Verlag, Berlin, 1988, pp. 218–226.

    Google Scholar 

  94. Zoutendijk, G.: Mathematical Programming Methods, North-Holland, Amsterdam, 1976.

    Google Scholar 

  95. Zowe, J.: Nondifferentiable Optimization—A Motivation and a Short Introduction into the Subgradient-and the Bundle-Concept, in K.Schittkowski (ed.), Computational Mathematical Programming, Springer-Verlag, Berlin, Heidelberg, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partly supported by the National Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zlobec, S. Characterizing optimality in mathematical programming models. Acta Appl Math 12, 113–180 (1988). https://doi.org/10.1007/BF00047497

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047497

AMS subject classifications (1980)

Key words and phrases

Navigation