Skip to main content
Log in

Natural history of human papillomavirus infection of the anogenital tract

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

A number of viruses, most notably herpes virus type 2, have been suggested as etiological agents of cervical neoplasia. Recent studies with human papillomaviruses, however, have demonstrated a remarkable association of a subgroup of these viruses with about 90% of benign, preinvasive and invasive lesions of the cervix and anogenital tract. The oncogenic potential of papillomaviruses has been demonstrated both in laboratory animals and in cultured cells. Furthermore, susceptibility to certain human papillomaviruses has been associated with a recessive genetic defect that results in squamous cell carcinoma of the skin. The human papillomaviruses are difficult to study, however, because of the lack of an animal model, difficulty in developing a tissue culture system permissive for their replication, and a lack of understanding of their biology. Current understanding of the natural history of anogenital neoplasia may provide insights into the mechanisms the host uses to cope with potentially oncogenic human papillomaviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rotkin ID: A comparison review of key epidemiological studies in cervical cancer related to current searches for transmissible agents. Cancer Res 33: 1353–1367, 1973

    Google Scholar 

  2. Kurman RJ, Shah KH; Lancaster WD, Jenson AB: Immunoperoxidase localization of papillomavirus antigens in cervical dysplasia and vulvar condylomas. Am J Obstet Gynecol 140: 931–935, 1981

    Google Scholar 

  3. Lancaster WD, Kurman RJ, Sanz LE, Perry S, Jenson AB: Human papillomavirus: Detection of viral DNA sequences and evidence for molecular heterogeneity in metaplasias and dysplasias of the uterine cervix. Intervirol 20: 202–212, 1983

    Google Scholar 

  4. Gissmann L, Wolnik L, Ikenberg H, Koldovsky U, Schnurch HG, zur Hausen H: Human papillomavirus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proc Natl Acad Sci USA 80: 560–563, 1983

    Google Scholar 

  5. Durst M, Gissmann L, Ikenberg H, zur Hausen H: A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA 80: 3812–3815, 1983

    Google Scholar 

  6. Boshart M, Gissmann L, Ikenberg H, Kleinheinz A, Scheurlen W, zur Hausen H: A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J 3: 1151–1157, 1984

    Google Scholar 

  7. Lorincz AT, Lancaster WD, Kurman RJ, Jenson AB, Temple GF: Characterization of human papillomaviruses in cervical neoplasias and their detection in routine clinical screening. In: Peto R, zur Hausen H (eds) Banbury Report 21: The Viral Etiology of Cervical Cancer. Cold Spring Harbor Laboratory, N.Y., 1986, pp 225–237

    Google Scholar 

  8. Lancaster WD, Castellano C, Santos C, Delgado G, Kurman RJ, Jenson AB: Human papillomavirus deoxyribonucleic acid in cervical carcinoma from primary and metastatic sites. Am J Obstet Gynecol 154: 115–119, 1986

    Google Scholar 

  9. Yee C, Krishnan-Hewlett I, Baker CC, Schlegel R, Howley PM: Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. Am J Pathol 119: 361–366, 1985

    Google Scholar 

  10. Rous P, Beard JW: The progression to carcinoma of virus-induced rabbit papillomas (Shope). J Exp Med 62: 523–548, 1935

    Google Scholar 

  11. Orth G, Jablonska S, Jarzabek-Chorzelska M, Rzesa G, Obalek S, Favre M, Croissant O: Characteristics of the lesions and risk of malignant conversion as related to the type of the human papillomavirus involved in epidermodysplasia verruciformis. Cancer Res 39: 1074–1082, 1979

    Google Scholar 

  12. Orth G, Favre M, Breithburd F, Croissant O, Obalek S Jarzabek-Chorzelska M, Rzesa G: Epidermodysplasia verruciformis: A model for the role of papilloma viruses in human cancer. Cold Spring Harbor Conf Cell Prolif 7: 259–282, 1980

    Google Scholar 

  13. Ostrow RA, Bender MA, Niimura M, Sekki T, Kawashima M, Pass F, Faras AJ: Human papillomavirus DNA in cutaneous primary and metastasized squamous cell carcinomas from patients with epidermodysplasia verruciformis. Proc Natl Acad Sci USA 79: 1634–1638, 1982

    Google Scholar 

  14. Majoros M, Devine KD, Parkhill EM: Malignant transformation of benign laryngeal papillomas in children after radiation therapy. Surg Clin N Am 43: 1049–1061, 1963

    Google Scholar 

  15. Boxer RJ, Skinner DG: Condyloma acuminata and squamous carcinoma. Urology 9: 72–78, 1977

    Google Scholar 

  16. Lorincz AT, Temple GF, Kurman RJ, Jenson AB, Lancaster WD: The oncogenic association of specific HPV; types with cervical neoplasia. J Natl Cancer Inst 79: 671–677, 1987

    Google Scholar 

  17. Lorincz AT, Lancaster WD, Temple GF: Cloning and characterization of the DNA of a new human papillomavirus from a woman with dysplasia of the uterine cervix. J Virol 58: 225–229, 1986

    Google Scholar 

  18. Cole ST, Streeck RE: Genome organization and nucleotide sequence of human papillomavirus type 33, which is associated with cervical cancer. J Virol 58: 991–995, 1986

    Google Scholar 

  19. Lorincz AT, Quinn AP, Lancaster WD, Temple GF: A new type of papillomavirus associated with cancer of the uterine cervix. J Virology 159: 187–190, 1987

    Google Scholar 

  20. Bangle R, Berger M, Levin M: Variations in the morphogenesis of squamous carcinoma of the cervix. Cancer 16: 1151–1159, 1963

    Google Scholar 

  21. Lorincz AT, Temple GF, Patterson JA, Jenson AB, Kurman RJ, Lancaster WD: Correlation of cellular atypia and human papillomavirus DNA sequences in exfoliated cells of the uterine cervix. Obstet Gynecol 68: 508–512, 1986

    Google Scholar 

  22. Lancaster WD, Meinke W: Peristence of viral DNA in human cell cultures infected with human papilloma virus. Nature 256: 434–436, 1975

    Google Scholar 

  23. LaPorte RF, Taichman L: Human papilloma viral DNA replicates as a stable episome in cultured epidermal keratinocytes. Proc Natl Acad Sci, USA 79: 3393–3397, 1982

    Google Scholar 

  24. Ferenczy A, Mitao M, Nagai N, Silverstein SJ, Crum CP: Latent papillomavirus and recurring genital warts. N Engl J Med 313: 784–788, 1985

    Google Scholar 

  25. Steinberg BM, Topp WC, Schneider PS, Abramson AL: Laryngeal papillomavirus in clinically and histologically normal tissue. N Engl J Med 308: 1261–1264, 1983

    Google Scholar 

  26. Kistner RW, Hertig AT: Papillomas of the uterine cervix: Their malignant potentiality. Obstet. Gynecol. 6: 147–161, 1955

    Google Scholar 

  27. Kurman RJ, Jenson AB, Lancaster WD: Papillomavirus infection of the cervix. II. Relationship to intraepithelial neoplasia based on the presence of specific viral structural proteins. Am J Surg Pathol 7: 39–52, 1983

    Google Scholar 

  28. Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman TL: RNA complementary to a herpes virus alpha gene mRNA is prominent in latently infected neurons. Science 235: 1956–1059, 1987

    Google Scholar 

  29. Yang Y, Okayama H, Howley PM: Bovine papillomavirus contains multiple transforming genes. Proc Natl Acad Sci USA 82: 1030–1034, 1985

    Google Scholar 

  30. Stenlund A, Zabielski J, Ahola H, Moreno-Lopex J, Pettersson U: Messenger RNAs form the transforming region of bovine papilloma virus type 1. J Mol Biol 182: 541–554, 1985

    Google Scholar 

  31. Smotkin D, Wettstein FO: Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proc Natl Acad Sci, USA 83: 4680–4684, 1986

    Google Scholar 

  32. Nasseri M, Wettstein FO: Differences exist between viral transcripts in cottontail rabbit papillomavirus-induced benign and malignant tumors as well as non-virus-producing tumors. J Virol 51: 706–712, 1984

    Google Scholar 

  33. Chen EY, Howley PM, Levinson AD, Seeberg PH: The primary structure and genetic organization of bovine papillomavirus type 1. Nature 299: 529–534, 1982

    Google Scholar 

  34. Danos O, Katinka M, Yaniv M: Human papillomavirus 1a complete DNA sequence: A novel type of genome organization among papovariridae. EMBO J 1: 231–236, 1982

    Google Scholar 

  35. Yang YC, Spalholz BA, Rabson MS, Howley PM: Dissociation of transforming andtrans activation functions for bovine papillomavirus type 1. Nature 318: 75–577, 1985

    Google Scholar 

  36. Groff DE, Lancaster WD: Genetic analysis of the 3′ early region transformation and replication functions of bovine papillomavirus type 1. Virology 150: 221–230, 1986

    Google Scholar 

  37. DiMaio D, Guralski D, Schiller JT: Translation of open reading frame E5 of bovine papillomavirus is required for its transforming activity. Proc Natl Acad Sci USA 83: 1797–1801, 1986

    Google Scholar 

  38. Schiller JT, Vass WC, Vousden KH, Lowy DR: E5 open reading frame of bovine papillomavirus type 1 encodes a transforming gene. J. Virol 57: 1–6, 1986

    Google Scholar 

  39. Androphy EJ, Schiller JT, Lowy DR: Identification of the protein encoded by the E6 transforming gene of bovine papillomavirus. Science 230: 442–445, 1985

    Google Scholar 

  40. Berman A, Winkelmann RK: Flat warts undergoing involution: Histopathologic findings. Arch Dermatol 113: 1219–1221, 1977

    Google Scholar 

  41. Iwatsuki K, Tagami H, Takigawa M, Yamada M: Plane warts under spontaneous regression: Immunopathologic study of cellular constitutents leading to the inflammatory reaction. Arch Dermatol 122: 655–659, 1986

    Google Scholar 

  42. Tagami H, Oku T, Iwatsuki K: Primary tissue culture of spontaneously regressing falt warts:In vitro attack by mononuclear cells against wart-derived epidermal cells. Cancer 55: 2437–2441, 1985

    Google Scholar 

  43. Lack EE, Jenson AB, Smith HG, Healy GB, Pass F, Vawter GF: Immunoperoxidase localization of human papillomavirus in laryngeal papillomas. Intervirol 14: 148–154, 1980

    Google Scholar 

  44. Gal AA, Meyer PR, Taylor CR: Papillomavirus antigens in anorectal condyloma and carcinoma in homosexual men. J Am Med Assoc 257: 337–340, 1987

    Google Scholar 

  45. Evans CA, Ito Y: Antitumor immunity in the Shope papilloma-carcinoma complex. III. Response to reinfection with viral nucleic acid. J Natl Cancer Inst 36: 1161–1166, 1966

    Google Scholar 

  46. Evans CA, Weiser RS, Ito Y: Antiviral and antitumor immunological mechanisms operative in the Shope papilloma carcinoma system. Cold Spring Harbor Symp Quant Biol 27: 453–462, 1963

    Google Scholar 

  47. Baird PJ: Serological evidence for the association of papillomavirus and cervical neoplasia. Lancet ii: 17–18, 1983

    Google Scholar 

  48. Orth G, Breitburd F, Favre M: Evidence for antigenic determinants shared by the structural polypepetides of (Shope) rabbit papillomavirus and human papillomavirus type 1. Virology 91: 243–255, 1978

    Google Scholar 

  49. Zinkernagel RM, Doherty PC: MHC-restricted cytotoxic T cells: Studies of the biological role of polymorphic major transplantation antigens determining T cell restriction-specificity, function and responsiveness. Adv Immunol 27: 51–77, 1979

    Google Scholar 

  50. Powell LC, Pollard M, Jenkins JL: Treatment of condylomata acuminata by autogenous vaccine. South Med J 63: 202–205, 1970

    Google Scholar 

  51. Bernards R, Schrier PI, Houweling A, Bos JL, van der Eb AJ, Zijlstra M, Melief CJM: Tumorigenicity of cells transformed by adenovirus type 12 by evasion of T-cell immunity. Nature 305: 776–779, 1983

    Google Scholar 

  52. Tanaka K, Hayashi H, Hamada C, Khoury G, Jay G: Expression of the major histocompatibility of immune recognition. Proc Natl Acad Sci USA 83: 8723–8727, 1986

    Google Scholar 

  53. Tanaka K, Isselbacher KJ, Khoury G, Jay G: Reversal of oncogenesis by the expression of a major histocompatibility complex class I gene. Science 228: 26–30, 1985

    Google Scholar 

  54. Houweling A, van der Elsen PJ, van der Eb AJ: Partial transformation of primary rat cells by the left-most 4.5% fragment of adenovirus 5 DNA. Virology 105: 537–550, 1980

    Google Scholar 

  55. Lee WMF, Schwab M, Westaway D, Varmus H: Augmented expression of normalc-myc is sufficient for cotransformation of rat embryo cells with a mutantras gene. Mol Cell Biol 5: 3345–3356, 1985

    Google Scholar 

  56. Butel JS: Studies with human papilloma virus modeled after known papovavirus systems. J Natl Cancer Inst 48: 285–299, 1972

    Google Scholar 

  57. Pirisi L, Yasumoto S, Feller M, Doniger J, DiPaulo Jr: Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA. J Virol 61: 1061–1066, 1987

    Google Scholar 

  58. Land H, Parada L, Weinberg RA: Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602, 1983

    Google Scholar 

  59. Ruley H: Adenovirus early region IA enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602–606, 1983

    Google Scholar 

  60. Lancaster WD: Apparent lack of integration of bovine papillomavirus DNA in virus-induced equine and bovine tumor cells and virus-transformed mouse cells. Virology 108: 251–255, 1981

    Google Scholar 

  61. Law M-F, Lowy DR, Dvoretzky I, Howley PM: Mouse cells transformed by bovine papillomavirus contain only extrachromosomal viral DNA sequences. Proc Natl Acad Sci USA 78: 2727–2731, 1981

    Google Scholar 

  62. Groff DE, Sundberg JP, Lancaster WD: Extrachromosomal deer fibromavirus DNA in deer fibromas and virus-transformed mouse cells. Virology 131: 546–550, 1983

    Google Scholar 

  63. Wettstein FO, Stevens JG: Variable-sized free episomes of Shope papilloma virus DNA are present in all non-virus-producing neoplasms and integrated episomes are detected in some. Proc Natl Acad Sci USA 79: 790–794, 1982

    Google Scholar 

  64. McVay P, Fretz M, Wettstein F, Stevens J, Ito Y: Integrated Shope virus DNA is present and transcribed in the transplantable rabbit tumor Vx-7. J Gen Virol 60: 271–278, 1982

    Google Scholar 

  65. Gissmann L, Schwartz E: Persistence and expression of human papillomavirus DNA in genital cancer. In: Evered D, Clark C (eds). Papillomaviruses. John Wiley, Chichester, 1986, pp 190–197

    Google Scholar 

  66. Durst M, Kleinheinz A, Holz M, Gissmann L: The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumours. J Gen Virol 66: 1515–1522, 1985

    Google Scholar 

  67. Shimoda K, Lancaster WD: Integration of human papillomavirus sequences in mild cervical dysplasia. Cancer Cell 5: 349–357, 1987

    Google Scholar 

  68. Durst M, Schwartz E, Gissmann L: Integration and persistence of human papillomavirus DNA in genital tumors. In: Peto R, zur Hausen H (eds) Banbury report 21: Viral Etiology of Cervical Cancer, Cold Spring Harbor Laboratory, N.Y., 1986, pp 281–290

    Google Scholar 

  69. Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck, Stremlau A, zur Hausen H: Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 341: 111–114, 1985

    Google Scholar 

  70. Durst M, Croce C, Gissmann L, Schwarz E, Huebner K: Papillomavirus sequences integrate near cellular oncogenes in some cervical cancers. Proc Natl Acad Sci USA 84: 1070–1074, 1987

    Google Scholar 

  71. Popescu NC, Amsbaugh SC, DiPaulo J: Human papillomavirus type 18 DNA is integrated at a single chromosome site in cervical carcinoma cell line SW756. J Virol 61: 1682–1685, 1987

    Google Scholar 

  72. Riou GF, Barrois M, Dutronquay V, Orth G: Presence of papillomavirus DNA sequences, amplification ofc-myc and c-Ha-ras oncogenes and enhanced expression ofc-myc in carcinomas of the uterine cervix. In: Howley PM, Broker TR (eds) Papillomaviruses: Molecular and Clinical Aspects, Alan R. Liss, N.Y., 1985, pp 47–56

    Google Scholar 

  73. Rando RF, Sedlacek TV, Hunt J, Jenson AB, Kurman RJ, Lancaster WD: Verrucous carcinoma of the vulva associated with an unusual type 6 human papillomavirus. Obstet Gynecol 76: 70S-75S, 1986

    Google Scholar 

  74. Rando RF, Groff DE, Chirkjian JG, Lancaster WD: Isolation and characterization of a novel human papillomavirus type 6 DNA from an invasive vulvar carcinoma. J Virol 57: 353–356, 1986

    Google Scholar 

  75. Boshart M, zur Hausen H: Human papillomaviruses in Buschke-Lowenstein tumors: Physical state of the DNA and identification of a tandem duplication in the noncoding region of a human papillomavirus type 6 subtype. J Virol 58: 963–966, 1986

    Google Scholar 

  76. Rando RF, Lancaster WD, Han P, Lopez C: The noncoding region of HPV-6vc contains two distinct transcriptional enhacing elements. Virology 155: 545–556, 1986

    Google Scholar 

  77. Bishop JM: Cellular oncogenes and retroviruses. Ann Rev Biochem 52: 301–354, 1983

    Google Scholar 

  78. Lutzner MA: Epidermodysplasia verruciformis. Bull Cancer 65: 169–182, 1978

    Google Scholar 

  79. Lutzner M, Croissant O, Ducasse M-F, Kreis H, Crosnier J, Orth G: A potentially oncogenic human papillomavirus (HPV-5) found in two renal allograft recipients. J Invest Dermatol 75: 353–356, 1980

    Google Scholar 

  80. Furgyik S, Grubb R, Kullander S, Sandahl B, Winegerup L, Eydal A: Familial occurrence of cervical cancer, stages O-IV. Acta Obstet Gynecol Scand 65: 223–227, 1986

    Google Scholar 

  81. Silverberg E, Lubera J: Cancer Statistics, 1986. Ca 36: 9–25, 1986

    Google Scholar 

  82. Figge DC, Bennington JL, Schweid AI: Cervical cancer after initial negative and typical vaginal cytology. Am J Obstet Gynecol 108: 422–428, 1970

    Google Scholar 

  83. Dunn JE Jr, Crocker DW, Rube IF, Erickson CC, Coleman SA: Cervical cancer occurrence in Memphis and Shelby County, Tennessee, during 25 years of its cervical cytology screening program. Am J Obstet Gynecol 150: 861–864, 1984

    Google Scholar 

  84. Dunn JE, Schweitzer V: The relationship of cervical cytology to the incidence of invasive cervical cancer and mortality in Alameda County, California, 1960 to 1974. Am J Obstet Gynecol 139: 868–876, 1981

    Google Scholar 

  85. Bain RW, Crocker DW: Rapid onset of cervical cancer in an upper socioeconomic group. Am J Obstet Gynecol 146: 366–371, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lancaster, W.D., Jenson, A.B. Natural history of human papillomavirus infection of the anogenital tract. Cancer Metast Rev 6, 653–664 (1987). https://doi.org/10.1007/BF00047472

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047472

Key words

Navigation