Skip to main content

Advertisement

Log in

The application of lectins to the characterization and isolation of mammalian cell populations

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Mammalian cells invariably contain a vast array of glycosylated moieties, both inside the cell and on the cell surface. There is an increasing awareness of the utility of these carbohydrates in delineating the phenotype or function of many populations of cells. To this end lectins are extremely useful reagents. Lectins are carbohydrate-binding proteins and glycoproteins of non-immune origin derived from numerous plants and animals. A wide variety of lectins with many distinct carbohydrate specificities have been isolated. Historically the most common laboratory techniques utilizing lectins have been agglutination, mitogen stimulation, and fluorescence techniques. Recent advances in the development and conjugation procedures for labels and matrices have led to the creation of numerous novel lectin-based assays. Lectins are currently used not only to identify cells with specified carbohydrate groups, but also to quantitate the carbohydrate groups or to isolate the carbohydrate-bearing cells or structures

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lis H, Sharon N: Lectins as molecules and as tools. Ann Rev Biochem 55: 35–67, 1986

    Google Scholar 

  2. Liener IE, Sharon N, Goldstein IJ: The Lectins: Properties, Functions and Applications in Biology and Medicine. Academic Press, Harcourt Brace Jovanovich Publishers, Orlando, FL, 1986

    Google Scholar 

  3. Barondes SH: Lectins: Their multiple endogenous functions. Ann Rev Biochem 50: 207–231, 1981

    Google Scholar 

  4. Goldstein IJ, Hayes CE: The lectins: Carbohydrate-binding proteins of plants and animals. Adv Carbohydrate Chem and Biochem 35: 127–340, 1978

    Google Scholar 

  5. McCoy Jr JP: Contemporary laboratory applications of lectins. Biotechniques 4 (3): 252–262, 1986

    Google Scholar 

  6. Nowell PC: Phytohemagglutinin: An initiator of mitosis in cultures of normal human leukocytes. Cancer Res 20: 462–466, 1960

    Google Scholar 

  7. Yokoyama K, Yano O, Terao T, Osawa T: Purification and biological activities of pokeweed (Phytolacca americana) mitogens. Biochim Biophys Acta 427 (2): 443–452, 1976

    Google Scholar 

  8. Jacobsson H, Blomgren H: Characterization of mouse cells releasing or responding to mitogenic factor induced by phytomitogensin vitro. J Immunol 114 (5): 1631–1637, 1975

    Google Scholar 

  9. Gupta BKD, Chatterjee-Ghose R, Sen A: Purification and properties of mitogenic lectins from seeds ofLathyrus sativus Linn. Arch Biochem Biophys 201: 137–146, 1980

    Google Scholar 

  10. Falasca A, Franceschi C, Rossi CA, Stirpe F: Purification and partial characterization of a mitogenic lectin fromViccia sativa. Biochim Biophys Acta 577: 71–81, 1979

    Google Scholar 

  11. Yamaguchi N, Yoshimatsu K, Toyoshima S, Osawa T: Isolation and characterization of a mitogenic substance for murine and human B lymphocytes fromUlex europeus seeds. J Immunol 126: 2290–2295, 1981

    Google Scholar 

  12. Campbell PA, Hartman AL, Abel CA: Stimulation of B cells, but not T cells or thymocytes, by a sialic acid-specific lectin. Immunol 45: 155–162, 1982

    Google Scholar 

  13. Miller K: The stimulation of human B and T lymphocytes by various lectins. Immunobiology 165: 132–146, 1983

    Google Scholar 

  14. Hume DA, Weidemann MJ. Mitogenic lymphocyte transformation, Elsevier/North-Holland Biomedical Press, Amsterdam, 1980

    Google Scholar 

  15. O'Brien RL, Parker JW, Dixon JFP: Mechanisms of lymphocyte transformation. Prog Mol Subcell Biol 6: 201–270, 1978

    Google Scholar 

  16. Borberg H, Yesner I, Gesner B, Silber R: The effect of N-acetyl-D-galactosamine and other sugars on the mitogenic activity and attachment of PHA to tonsil cells. Blood 31(6): 747–757, 1968

    Google Scholar 

  17. Novogrodsky A, Katchalski E: Lymphocyte transformation by Concanavalin A and its reversion by Methyl-alpha-D-Mannopyranoside. Biochim Biophys Acta 228(2): 579–583, 1971

    Google Scholar 

  18. Segel GB: Membrane alterations in lymphocyte proliferation. Am J Pediatr Hematol Oncol 3(4): 433–438, 1981

    Google Scholar 

  19. Cohen S, Pick E, Oppenheim JJ (eds). Biology of the lymphokines, Academic Press, New York, 1979

    Google Scholar 

  20. Robb RJ: Interleukin 2: The molecule and its function. Immunol Today 5: 203–209, 1984

    Google Scholar 

  21. Ronnblom L, Funa K, Ersson B, Alm GV: Lectins as inducers of interferon-gamma production in human lymphocytes: Lentil lectin is highly efficient. Scand J Immunol 16: 327–331, 1982

    Google Scholar 

  22. Eridani S, Valentini R, Giangrande A, Pointe GB: Cell culture reactivity of human lymphocytes to pokeweed mitogen in comparison to phytohemagglutinin. Int Arch Allergy Appl Immunol 35(3): 270–278, 1969

    Google Scholar 

  23. Gajl-Peczalska K, Meuwissen HJ, Good RA: Pokeweed mitogen-induced blastoid transformation in purified and non-purified, leukocyte cultures. Int Arch Allergy Appl Immunol 36(6): 546–553, 1969

    Google Scholar 

  24. Braunstein JD, Melamed MR, Darzynkiewicz, Traganos F, Sharpless T, Good RA: Quantitation of transformed lymphocytes by flow cytofluorimetry. I Phytohemagglutinin response. Clin Immunol Immunopathol 4 (2): 209–215, 1975

    Google Scholar 

  25. Braunstein JD, Good RA, Hansen JA, Sharpless TK, Melamed MR: Quantitation of lymphocyte response to antigen by flow cytofluorometry. J Histochem Cytochem 24(1): 378–382, 1976

    Google Scholar 

  26. Braunstein JD, Melamed MR, Sharpless TK, Hansen JA, Dupont B, Good RA: Quantitation of lymphocyte proliferative response to allogeneic cells and phytohemagglutinin by flow cytofluorometry. II. Comparison with 14C-thymidine incorporation. Clin Immunol Immunopathol 5(3): 326–332, 1976

    Google Scholar 

  27. Braunstein JD, Schwartz G, Good RA, Sharpless TK, Melamed MR: Quantitation of lymphocyte response to PHA by flow cytofluorometry. III. Heterogeneity of induction period. J Histochem Cytochem 27(1): 474–477 1979

    Google Scholar 

  28. Mizel SB: Interleukin 1 and T-cell activation. Immunol Rev 63: 51–72, 1982

    Google Scholar 

  29. Hunig T, Loos M, Schimpl A: The role of accessory cells in polyclonal T-cell activation. I. Both induction of interleukin 2 production and of interleukin 2 responsiveness by concanavalin A are accessory cell dependent. Eur J Immunol 13: 1–6, 1983

    Google Scholar 

  30. Roosnek EE, Brouwer MC, Aarden LA: T-cell triggering by lectins. I. Requirements for interleukin 2 production; Lectin concentration determines the accessory cell dependency. Eur J Immunol 15: 652–656, 1985

    Google Scholar 

  31. Roosnek EE, Brouwer MC, Aarden LA: T-cell triggering by lectins. II. Stimuli for induction of interleukin 2 responsiveness and interleukin 2 production differ only in quantitative aspects. Eur J Immunol 15: 657–661, 1985

    Google Scholar 

  32. Palacios R, Leu T: Both cloned interleukin 2 and purified interleukin 1 are required for optimal growth of purified L3T4+ and Ly+ 2+ lymphocytes initiated by concanavalin A. Cell Immunol 94: 369–382, 1985

    Google Scholar 

  33. Wakasugi H, Bertoglio J, Tursz T, Fradelizi D: IL-2 receptor induction of human T lymphocytes: Role for IL-2 and monocytes. J Immunol 135: 321–327, 1985

    Google Scholar 

  34. Chicken CA, Sharom FJ: The concanavalin A receptor from human erythrocytes in lipid bilayer membranes. Interaction with concanavalin A and succinyl-concanavalin A. Biochim Biophys Acta 729(2): 200–208, 1983

    Google Scholar 

  35. Beachy, Goldman D, Czech MP: Lectins activate lymphocyte pyruvate dehydrogenase by a mechanism sensitive to protease inhibitors. Proc Natl Acad Sci (USA) 78(10): 6256–6260, 1981

    Google Scholar 

  36. Gillis S, Crabtree GR, Smith KA: Glucocorticoid-induced inhibition of T cell growth factor production. I. The effect on mitogen-induced lymphocyte proliferation. J Immunol 123(4): 1624–1631, 1979

    Google Scholar 

  37. Fraser AR, Hemperly JJ, Wang JL, Edelman GM: Monovalent derivatives of concanavalin A. Proc Natl Acad Sci (USA) 73 (3): 790–794, 1976

    Google Scholar 

  38. Tanaka I, Abe Y, Hamada T, Yonemitsu O, Ishii S: Mono-valent monomer derivative of concanavalin A produced by photochemically induced alkalation. J Biochem (Tokyo) 89(5): 1643–1646, 1981

    Google Scholar 

  39. Uchida T, Yamaizumi M, Mekada E, Okada Y, Tsuda M, Kurokawa T, Sugino Y: Reconstitution of hybrid toxin from fragment A of diptheria toxin and a subunit ofWisteria floribunda lectin. J Biol Chem 253(18): 6307–6310, 1978

    Google Scholar 

  40. Surolia A, Appukuttan PS, Pain D, Bachhawat BK: Monovalent lectin as a novel tool for the resolution of microheterogeneity in glycoproteins. Anal Biochem 105 (2): 436–440, 1980

    Google Scholar 

  41. Yates LD, Saye HJ: Interaction of monomeric and oligomeric soybean agglutinins with pig lymphocytes and plasma membranes. Membr Bioch 5(1): 19–34, 1983

    Google Scholar 

  42. Lustig S, Pluznik DH: Rearrangement of Con A and WGA receptors on murine mastocytoma cell membrane: relationship to cell cycle. J Cell Physiol 115(1): 87–92, 1983

    Google Scholar 

  43. Garrido J: Ultrastructural labeling of cell surface lectin receptors during the cell cycle. Exp Cell Res 94(1): 159–175, 1975

    Google Scholar 

  44. Noonan KD, Levine AJ, Burger MM: Cell cycle-dependent changes in the surface membrane as detected with 3H-concanavalin A. J Cell Biol 58(2): 491–497, 1973

    Google Scholar 

  45. Judd WJ: The role of lectins in blood group serology. CRC Crit Rev Clin Lab Sci 1: 171–214, 1980

    Google Scholar 

  46. Bird GWG: Specific agglutinating activity for human red blood corpuscles in extracts ofDolichos biflorus. Cur Sci 20: 298–299, 1951

    Google Scholar 

  47. Etzler M, Kabat EA: Purification and characterization of a lectin (plant hemagglutinin) with blood group A specificity fromDolichos biflorus. Biochemistry 9(4): 869–877, 1970

    Google Scholar 

  48. Tovey GH, Lockyer WJ: Valuable new sources of anti-A and anti-B. J Med Lab Technol 26(3): 264–267, 1969

    Google Scholar 

  49. Hammerstrom S, Kabat EA: Purification and characterization of a blood group A reactive hemagglutinin from the snailHelix pomatia and a study of its combining site. Biochemistry 8(7): 2696–2705, 1968

    Google Scholar 

  50. Cann GB: A laboratory evaluation of the hemagglutinating substance from the snailHelix aspersa. J Med Lab Technol 31(1): 11–36, 1974

    Google Scholar 

  51. Murphy LA, Goldstein IJ: Five alpha-D-galactopyranosyl-binding isolectins fromBandeiraea simplicifolia seeds. J Biol Chem 252: 4739–4742, 1977

    Google Scholar 

  52. Wood C, Kabat EA, Murphy LA, Goldstein IJ: Immunochemical studies of the combining sites of the two isolectins, A4 and B4, isolated fromBandeiraea simplicifolia. Arch Biochem Biophys 198(1): 1–11, 1979

    Google Scholar 

  53. Galbraith W, Goldstein IJ: Phytohemagglutinin of the lima bean (Phaseolus lutanus). Isolation, characterization, and interaction with type A blood group substances. Biochemistry 11(21): 3976–3984, 1972

    Google Scholar 

  54. Kahri KK, Gahmberg CG: Isolation and characterization of the blood group A-specific lectin fromVicia cracca. Biochim Biophys Acta 622(2): 337–343, 1980

    Google Scholar 

  55. Judd WJ, Murphy LA, Goldstein IJ, Campbell L, Nichols ME: An anti-B reagent prepared from the alpha-D-galactopyranosyl-binding isolectins fromBandeiraea simplicifolia seeds. Transfusion 18(3): 274–280, 1978

    Google Scholar 

  56. Rogers DJ, Blunden G, Evans PR:Ptilota plumosa, a new source of an anti-B blood group specific lectin. Med Lab Sci 34(3): 193–200, 1977

    Google Scholar 

  57. Downie DM, Madin DF, Voak D: An evaluation of the salmon anti-B reagent in manual and automated blood grouping. Med Lab Sci 34(9): 319–324, 1977

    Google Scholar 

  58. Chattoraj A, Boyd WC: A specific anti-B lectin for routine diagnostic purposes. J Immunol 96(5): 898–900, 1966

    Google Scholar 

  59. Jonsson B: Blutgruppenstudien mit Japanischen und Schwedischen aalserum. Acta Pathol Microbiol Scand Suppl 54: 456–464, 1944

    Google Scholar 

  60. Bird GW, Wingham J: Anti-H fromCerastium tomentosum seeds. A comparison with other seed anti-H agglutinins. Vox Sang 19(2): 132–139, 1970

    Google Scholar 

  61. Matsumoto I, Osawa T: Specific purification of eel serum andCytisus sessilifolius anti-H hemagglutinins by affinity chromatography and their binding to human erythrocytes. Biochemistry 13(3): 582–588, 1974

    Google Scholar 

  62. Konami Y, Yamamoto K, Tsuji T, Matsumoto I, Osawa T: Purification and characterization of two types ofLaburnum alpinum anti-H (O) hemagglutinin by affinity chromatography. Hoppe-Seylers Z Physiol Chem 364(4): 397–405, 1983

    Google Scholar 

  63. Renkonen KO: Studies on hemagglutinins present in seeds of some representatives of family of leguminosae. Ann Med Exp Biol Fenn 26: 66–72, 1948

    Google Scholar 

  64. Cazal P, Lalaurie M: Recherches sur quelques phyto-agglutinines specifiques des groupes sanguins ABO. Acta Haematol 8 73–80, 1952

    Google Scholar 

  65. Lloyd KO, Kabat EA, Beychok S: Immunochemical studies on blood group substances from various sources with a plant lectin, concanavalin A. J Immunol 102(6): 1354–1362, 1969

    Google Scholar 

  66. Boyd WC, Shapleigh E: Separation of individuals of any blood group into secretor and nonsecretors by use of a plant agglutinin (lectin). Blood 9: 1195–1198, 1954

    Google Scholar 

  67. Harpaz N, Flowers HM, Sharon N: Studies on B-antigenic sites of human erythrocytes by use of coffee bean alpha-galactosidase. Arch Biochem Biophys 170: 676–683, 1975

    Google Scholar 

  68. Peters BP, Goldstein IJ: The use of fluorescein-conjugatedBandeiraea simplicifolia B4 isolectin as a histochemical reagent for the detection of alpha-D-galactopyranosyl groups. Their occurrence in basement membranes. Exp Cell Res 120(2): 321–334, 1979

    Google Scholar 

  69. Nicolson GL: Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over surface components. Biochim Biophys Acta 457: 57–108, 1976

    Google Scholar 

  70. Nicolson GL: Transmembrane control of the receptors on normal and tumor cells. II. Surface changes associated with transformation and malignancy. Biochim Biophys Acta 458: 1–72, 1976

    Google Scholar 

  71. Berke G, Fishelson Z: Possible role of nucleus-membrane interaction in capping of surface membrane receptors. Proc Natl Acad Sci (USA) 73(12): 4580–4583, 1976

    Google Scholar 

  72. Schwartz MA, Harper PA, Juliano RL. Interactions of lectins with CHO Cell surface membranes. II. Differential effects of local anaesthetics on endocytosis of Con A and WGA binding sites. J Cell Physiol 111(3): 264–274, 1982

    Google Scholar 

  73. Cherry RJ: Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta 559: 289–327, 1979

    Google Scholar 

  74. Monsigny M, Sene C, Obrenovitch A: Quantitative fluorometric determination of cell surface glycoconjugates with fluorescein-substituted lectin, Eur J Biochem 96: 295–300, 1979

    Google Scholar 

  75. Malin-Berdel J, Valet G, Thiel E, Forrester JA, Gurtler L: Flow cytometric analysis of the binding of eleven lectins to human T- and B-cells and to human T- and B-cell lines. Cytometry 5: 204–209, 1984

    Google Scholar 

  76. Reisner Y, Pahwa S, Chiao JW, Sharon N, Evans RL, Good RA: Separation of antibody helper and antibody suppressor human T cells by using soybean agglutinin. Proc Natl Acad Sci (USA) 77(11): 6778–6782, 1980

    Google Scholar 

  77. Vose BM, Blackledge G, Crowther D, Gallaher J: Lectinbinding characteristics of human natural killer cells. Immunol 46: 619–627, 1982

    Google Scholar 

  78. Boldt DH, Nelson MO: Lymphocyte subpopulations in chronic lymphocytic leukemia detected by lectin binding and flow cytometry Cancer 51: 2083–2089, 1983

    Google Scholar 

  79. Barton RW: The binding ofMaclura pomifera lectin to cells of the T-lymphocyte lineage in the rat. Cell Immunol 67: 101–111, 1982

    Google Scholar 

  80. Reimann J, Ehman D, Miller RG: Differential binding of lectins to lymphopoietic and myelopoietic cells in murine marrow as revealed by flow cytometry. Cytometry 5: 194–203, 1984

    Google Scholar 

  81. Nakano T, Oguchi Y, Imai Y, Osawa T: Induction and separation of mouse helper T cells by lectins. Immunol 40: 217–222, 1980

    Google Scholar 

  82. McCoy JP, Shibuya N, Riedy MC, Goldstein IJ:Griffonia simplicifolia I isolectin as a functionally monovalent probe for use in flow cytometry. Cytometry 7: 142–146, 1986

    Google Scholar 

  83. Ryan D, Kossover S, Mitchell S, Frantz C, Hennessy L, Cohen H: Subpopulations of common acute lymphoblastic leukemia antigen-positive lymphoid cells in normal bone marrow identified by hemapoietic differentiation antigens. Blood 68(2): 417–425, 1986

    Google Scholar 

  84. Chan SS, Arndt-Jovin D, Jovin TM: Proximity of lectin receptors on the cell surface measured by fluorescence energy transfer in a flow system. J Histochem Cytochem 27: 56–64, 1979

    Google Scholar 

  85. McCoy JP, Varani J, Goldstein IJ: Enzyme-linked lectin assay (ELLA): Detection of carbohydrate groups on the surface of unfixed cells. Exp Cell Res 151: 96–103, 1984

    Google Scholar 

  86. Varani J, Grimstad IA, Knibbs RN, Hovig T, McCoy JP: Attachment, spreading and growthin vitro of highly malignant and low malignant murine fibrosarcoma cells. Clin Exp Metast 3(1): 45–59, 1985

    Google Scholar 

  87. Kohn J, Raymond J, Voller A, Turp P: Rapid methods for the demonstration of sugar residues in tissue extracts, fluids, and lectins in plant extracts. In: Bog-Hansen TC, Spengler GA (eds) Lectins, Vol III, Walter de Gruyter and Co, Berlin, pp 405–414, 1983

    Google Scholar 

  88. Gonatas NK, Avrameas S: Detection of plasma membrane carbohydrates with lectin-peroxidase conjugates. J Cell Biol 59: 436–443, 1973

    Google Scholar 

  89. Nicolson GL, Singer SJ: Ferritin-conjugated agglutinins as specific saccharide stains for electron microscopy. Application to saccharides bound to cell membranes. Proc Natl Acad Sci (USA) 68: 942–945, 1971

    Google Scholar 

  90. Mallinger R, Geleff S, Bock P: Histochemistry of glycosaminoglycans in cartilage ground substance. Alcian-blue staining and lectin-binding affinities in semithin epon sections. Histochem 85: 121–127, 1986

    Google Scholar 

  91. Mechtersheimer G, Moller P, Momburg F, Moldenhauer G, Schwechheimer K: Simultaneous demonstration of lectin-binding sites and antigens by monoclonal antibodies in a parallelized double-staining technique: A highly discriminative and quickly developing technique for frozen sections. J Histochem Cytochem 34(3): 399–402, 1986

    Google Scholar 

  92. Roth J: Applications of immunocolloids in light microscopy II. Demonstration of lectin-binding sites in paraffin sections by the use of lectin-gold or glycoprotein-gold complexes. J Histochem Cytochem 31(4): 547–552, 1983

    Google Scholar 

  93. Roth J: Application of lectin-gold complexes for electron microscopic localization of glycoconjugates on thin sections. J Histochem Cytochem 31(8): 987–999, 1983

    Google Scholar 

  94. Smits-van Prooije AE, Poelmann RE, Dubbeldam JA, Mentink MMT, Vermeij-Keers C: Wheat germ agglutinin-gold as a novel marker for mesectoderm formation in mouse embryos culturedin vitro. Stain Technol 61(2): 97–106, 1986

    Google Scholar 

  95. Sela B, Lis H, Sharon N, Sachs L: Quatitation of N-acetyl-D-galactosamine-like sites on the surface membrane of normal and transformed mammalian cells. Biochim Biophys Acta 249: 564–568, 1971

    Google Scholar 

  96. Arndt-Jovin DJ, Berg P: Quantitative binding of 125-I concanavalin A to normal and transformed cells. J Virol 8(5): 716–721, 1971

    Google Scholar 

  97. Unanue ER, Perkins WD, Karnovsky MJ: Ligand-induced movement of lymphocyte membrane macromolecules. I. Analysis by immunofluorescence and ultrastructural radioautography. J Exp Med 136: 885–906, 1972

    Google Scholar 

  98. Holt S, Wilkinson A, Suresh MR, Mate G, Reid WB, Longnecker BM, McPherson A, Nougaim AA: Radiolabelled peanut lectin for the scintigraphic detection of cancer. Cancer Lett 25: 55–60, 1984

    Google Scholar 

  99. Shysh A, Eu SM, Nougaim AA, Suresh MR, Longnecker BM:In vivo localization of radioiodinated peanut lectin in a murine TA3/Ha mammary carcinoma model. Eur J Nucl Med 10: 68–74, 1985

    Google Scholar 

  100. Zabel PL, Noujaim AA, Shysh A, Bray J: Radioiodinated peanut lectin: A potential radiopharmaceutical for immunodetection of carcinoma expressing the T-antigen. Eur J Nucl Med 8: 250–254, 1983

    Google Scholar 

  101. Glass WF, Briggs RC, Hnilica LS: Use of lectins for detection of electrophoretically separated glycoproteins transferred onto nitrocellulose sheets. Anal Biochem 115: 219–224, 1981

    Google Scholar 

  102. Schreiber WE, Whitta L: Alkaline phosphatase isoenzymes resolved by electrophoresis on lectin-containing agarose gel. Clin Chem 32(8): 1570–1573, 1986

    Google Scholar 

  103. Bog-Hansen TC, Bjerrum OJ, Brogen CH: Identification and quantification of glycoproteins by affinity electrophoresis. Anal Biochem 81: 78–87, 1977

    Google Scholar 

  104. Owen P, Oppenheim JD, Nachbar MS, Kessler RE: The use of lectins in the quantitation and analysis of macromolecules by affinoelectrophoresis. Anal Biochem 80: 446–457, 1977

    Google Scholar 

  105. Smith DF: Glycolipid-lectin interactions: Detection by direct binding of 125-I-lectins to thin layer chromatograms. Biochem Biophys Res Comm 115(1): 360–367, 1983

    Google Scholar 

  106. Li JG, Osgood EE: A rapid method for the separation of leukocytes and nucleated erythrocytes from blood or marrow with a phytohemagglutinin from red beans (Phaseolus vulgaris). Blood 4: 670–675, 1949

    Google Scholar 

  107. Reisner Y, Linker-Israeli M, Sharon N: Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cell Immunol 25: 129–134, 1976

    Google Scholar 

  108. Reisner Y, Ravid A, Sharon N: Use of soybean agglutinin for the separation of mouse B and T lymphocytes. Biochem Biophys Res Comm 72: 1585–1591, 1976

    Google Scholar 

  109. Reisner Y, Kapoor N, Kirkpatrick D, Pollack MS, Cunningham-Rundles S, Dupont B, Hodes MZ, Good RA, O'Reilly RJ: Transplantation for severe combined immunodeficiency with HLA-A, B, D, DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood 61(2): 341–348, 1983

    Google Scholar 

  110. Friedrich W, Vetter U, Heymer B, Reisner Y, Goldman SF, Fliedner TM, Peter HH, Kleihauer E: Immunoreconstitution in severe combined immunodeficiency after transplantation of HLA-haploidentical, T-cell-depleted bone marrow. Lancet 761–764, 1984

  111. Stanley WS, Peters BP, Blake DA, Yep D, Chu EHY, Goldstein IJ: Interaction of wild-type and variant mouse 3T3 cells with lectins fromBandeiraea simplicifolia seeds. Proc Natl Acad Sci (USA) 76(1): 303–307, 1979

    Google Scholar 

  112. Stanley P, Sudo T: Microheterogeneity among carbohydrate structures at the cell surface may be important in recognition phenomenon. Cell 23(3): 763–769, 1981

    Google Scholar 

  113. Stanley P: Glycosylation mutants of animal cells. Ann Rev Genet 18: 525–552, 1984

    Google Scholar 

  114. Eckhardt AE, Malone BN, Goldstein IJ: Inhibition of Ehrlich ascites tumor cell growth byGriffonia simplicifolia I lectinin vivo. Cancer Res 42: 2977–2979, 1982

    Google Scholar 

  115. Sharma SK, Mahendroo PP: Affinity chromatography of cells and cell membranes. J Chromatogr 184(4): 471–499, 1980

    Google Scholar 

  116. Irle C, Piquet PF, Vassalli P:In vitro maturation of immature thymocytes into immunocompetent T cells in the absence of direct thymic influence. J Exp Med 148: 32–45, 1978

    Google Scholar 

  117. Pereira MEA, Kabat EA: Immunochemical studies on lectins and their application to the fractionation of blood group substances and cells. CRC Crit Rev Immunol 1: 33–78, 1979

    Google Scholar 

  118. Hammarstrom S, Hellstrom U, Perlmann P, Dillner ML: A new surface marker on T lymphocytes of hyman peripheral blood. J Exp Med 138: 1270–1275, 1975

    Google Scholar 

  119. Hellstrom U, Hammarstrom S, Dillner ML, Perlmann H, Perlmann P: Fractionation of human blood lymphocytes onHelix pomatia— A hemagglutinin coupled to sepharose beads. Scand J Immunol 5 (suppl 5): 45–55, 1976

    Google Scholar 

  120. Hellstrom U, Dillner ML, Hammarstrom S, Perlman P: Fractionation of human T-lymphocytes on wheat germ agglutinin-sepharose. J Exp Med 144: 1381–1385, 1976

    Google Scholar 

  121. Boldt DH, Lyons RD: Fractionation of human lymphocytes with plant lectins. I: Structural and functional characteristics of lymphocyte subclasses isolated by an affinity technique usingLens culinaris lectin. Cell Immunol 43: 82–95, 1979

    Google Scholar 

  122. Herzenberg LA, Bianchi DW; Schroder J, Cann HM, Iverson GM: Fetal cells in the blood of pregnant women: Detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci (USA) 76: 1453–1455, 1979

    Google Scholar 

  123. Rosenberg M, Gazit E, Sharon N. Characterization of human umbilical cord blood lymphocyte subsets fractionated on immobilized peanut agglutinin. Human Immunol 7: 67–77, 1983

    Google Scholar 

  124. Maddox D, Shibata S, Goldstein IJ: Stimulated macrophages express a new glycoprotein reactive withGriffonia simplicifolia I-B4 isolectin. Proc Natl Acad Sci (USA) 79: 166–170, 1982

    Google Scholar 

  125. Kinzel V, Richards J, Kubler D: Lectin receptor sites at the cell surface employed for affinity separation of tissue culture cells. Basic requirements as realized byLens culinaris lectin (LCL) immobilized on 2tb-sepharose. Exp Cell Res 105: 389–400, 1977

    Google Scholar 

  126. Imai Y, Oguchi T, Nakano T, Osawa T: Separation of mouse T cell subsets by a fluorescent activated cell sorter using fluorescence-labeled peanut agglutinin. Immunol Comm 8(5–6): 495–503, 1979

    Google Scholar 

  127. Morsytn G, Nicola NA, Metcalf D: Purification of hemopoietic progenitor cells from human marrow using a fucose-binding lectin and cell sorting. Blood 56(5): 798–80; 1980

    Google Scholar 

  128. Nicola NA, Metcalf D, von Melchner H, Burgess AW: Isolation of murine fetal hemopoetic progenitor cells and selective fractionation of various erythroid precursors. Blood 58: 376–386, 1981

    Google Scholar 

  129. Seyfried-Williams R, McLaughlin BJ, Cooper NGF: Phagocytosis of lectin-coated beads by dystrophic and normal retinal pigment epithelium. Exp Cell Res 154: 500–509, 1984

    Google Scholar 

  130. Grimstad IA, Varani J, McCoy JP: Contribution of alpha-D-galactopyranosyl end groups to attachment of highly and low metastatic murine fibrosarcoma cells to various substrates. Exp Cell Res 155: 345–358, 1984

    Google Scholar 

  131. Finne J, Tao TW, Burger MN: Carbohydrate changes in glycoproteins of a poorly metastasizing wheat germ agglutinin-resistant melanoma clone. Cancer Res 40: 2580–2587, 1980

    Google Scholar 

  132. Dennis JW, Donaghue TP, Kerbel RS: Membrane-associated alterations detected in poorly tumorigenic lectin-resistant variant sublines of a highly malignant and metastatic murine tumor. J Natl Cancer Inst 66: 129–139, 1981

    Google Scholar 

  133. Altevogt P, Fogel M, Cheingsong-Popov R, Dennis J, Robinson P, Schirrmacher V: Different patterns of lectin binding and cell surface sialylation detected on related high- and low-metastatic tumor lines. Cancer Res 43: 5138–5144, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCoy, J.P. The application of lectins to the characterization and isolation of mammalian cell populations. Cancer Metast Rev 6, 595–613 (1987). https://doi.org/10.1007/BF00047469

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047469

Key words

Navigation