Skip to main content
Log in

The structural relationship of blood group-related oligosaccharides in human carcinoma to biological function: A perspective

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Blood group-related oligosaccharides have been isolated from a limited number of carcinomas. The carcinoma-associated oligosaccharides show chain elongation, for example due to repeating Gal 1,4 GlcNAc 1,3 sequences, or a higher degree of branching, which permit increased sialylation and fucosylation. Abnormal carbohydrate structures have been demonstrated on tumor cell membranes by immunological techniques, which suggests deletion of ABH, accumulation of ‘crypt’ antigens such as I and T antigens, andabnormal expression of Lewis antigens. Changes in carcinoma-associated oligosaccharides can result from altered biosynthetic processing in the Golgi apparatus or the occurrence of abnormal tumor glycosyltransferase isoenzymes. Structural alterations of oligosaccharides on the tumor cell membrane are related to the regulation of tumor growth, cell-cell interaction, cell differentiation, and metastasis. Glycoproteins secreted by tumor cells into the circulation evoke cellular and humoral immunity and cause immune suppression by binding to cytotoxic T lymphocytes and lymphocyte subsets. The relationship of oligosaccharide structures to biologic function awaits elucidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Gal:

galactose

Glc:

glucose

fuc:

fucose

GlcNAc:

2-acetamido-2-deoxyglucose

GalNAc:

2-acetamido-2-deoxygalactose

GalNAc-ol:

2-acetamido-2-deoxylalactitol, NeuAc-neuraminic acid

NeuNAc:

N-acetyl neuraminic acid

References

  1. Cheetham NWH, Dube VE: Preparation of lacto-N-neotetraose from human milk by high-performance liquid chromatography. J Chromatogr 262: 426–430, 1983

    Google Scholar 

  2. Dua VK, Goso K, Dube VE, Bush CA: Characterization of lacto-N-hexaose and two fucosylated derivatives from human milk by high performance liquid chromatography and proton NMR spectroscopy. J Chromatogr 328: 259–269, 1985

    Google Scholar 

  3. Dua VK, Dube VE, Bush CA: The combination of normal-phase and reverse-phase high-pressure liquid chromatography with NMR for the isolation and characterization of oligosaccharide alditols from ovarian cyst mucins. Biochimica et Biophysica Acta 802: 29–40, 1984

    Google Scholar 

  4. Dua VK, Dube VE, Li Y, Bush CA: Reverse phase HPLC fractionation of the oligosaccharide alditols isolated from an I-active ovarian cyst mucin glycoprotein. Glycoconjugate J 2: 17–30, 1985

    Google Scholar 

  5. Dua VK, Rao BNN, Dube VE, Bush CA: Characterization of oligosaccharide alditols from ovarian cyst mucin glycoproteins of blood group A using high pressure liquid chromatography (HPLC) and high field1H NMR spectroscopy. J Biol Chem 261: 1599–1608, 1986

    Google Scholar 

  6. Van Halbeek H, Dorland L, Vliegenthart JFG, Hull WE, Lamblin G, Lhermitte M, Boersma A, Roussell P: Primary-structure determination of fourteen neutral oligosaccharides derived from bronchial-mucus glycoproteins of patients suffering from cystic fibrosis, employing 500-MHz1H-NMR spectroscopy. Eur J Biochem 127: 7–20, 1982

    Google Scholar 

  7. Van Halbeek H, Dorland L, Vliegenthart JFG, Kochetkov NK, Arbatsky NP, Derevitskaya VA: Characterization of the primary-structure and the microheterogeneity of the carbohydrate chains of porcine blood group H substance by 500-MHz1H-NMR spectroscopy. Eur J Biochem 127: 21–29, 1982

    Google Scholar 

  8. Tanaka M, Dube VE, Anderson B: Structures of oligosaccharides cleaved by base-borohydride from an l, H, and Lea active ovarian cyst glycoprotein. Biochemica et Biophysica Acta 798: 283–290, 1984

    Google Scholar 

  9. Kornfeld R, Kornfeld S: Structure of glycoproteins and their oligosaccharide units. In: Lennarz WJ (ed) The Biochemistry of Glycoproteins and Proteoglycans. Plenum Press, New York, 1981, pp 1–34

    Google Scholar 

  10. Dunphy WG, Brands R, Rothman JE: Attachment of terminal N-acetyl-glucosamine to asparagine-linked oligosaccharides occurs in central cisternae of the Golgi stack. Cell 40: 463–472, 1985

    Google Scholar 

  11. Waechter CJ, Lennarz WJ: The role of polyprenol-linked sugars in glycoprotein synthesis. Annu Rev Biochem 45: 95–112, 1976

    Google Scholar 

  12. Tkacz JS, Lampen O: Tunicamycin inhibition of polyisoprenyl N-acetyl-glucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem Biophys Res Commun 65: 248–257, 1975

    Google Scholar 

  13. Koch HU, Schwarz RT, Scholtissek C. Glucosamine itself mediates reversible inhibition of protein glycosylation. A study of glycosamine metabolism at inhibitory concentrations in influenza-virus-infected cells. Eur J Biochem 94: 515–522, 1979

    Google Scholar 

  14. Hakomori S: Aberrant glycosylation in cancer cell membranes as focused on glycolipids. Overview and perspectives. Cancer Res 45: 2405–2414, 1985

    Google Scholar 

  15. Hakomori S: Tumor-associated carbohydrate antigens. Ann Rev Immunol 2: 103–126, 1984

    Google Scholar 

  16. Hakomori S: Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Ann Rev Biochem 50: 733–763, 1981

    Google Scholar 

  17. Kimura JH, Lohmander LS, Hascall VS: Studies on the biosynthesis of cartilage proteoglycan in a model system of cultured chondrocytes from the swarm rat chondrosarcoma. J Cell Biochem 26: 261–278, 1984

    Google Scholar 

  18. Stow JL, Kjellen L, Unger E, Hook M, Farquhar MG: Heparan sulfate proteoglycans are concentrated on the sinusoidal plasmalemmal domain and in intracellular organelles of hepatocytes. J Cell Biol 100: 975–980, 1985

    Google Scholar 

  19. Hubbard SC, Ivatt RJ: Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem 50: 555–583, 1981

    Google Scholar 

  20. Johnson DC, Spear PG: O-linked oligosaccharides are acquired by herpes simplex virus glycoproteins in the Golgi apparatus. Cell 32: 987–997, 1983

    Google Scholar 

  21. Heinegard D, Bjorne-Persson A, Coster L, Franzen A, Gardell S, Malmstrom A, Paulsson M, Sandfalk R, Vogel K: The core proteins of large and small interstitial proteoglycans from various connective tissues from distinct subgroups. Biochem J 230: 181–194, 1985

    Google Scholar 

  22. Telser A, Bovinson C, Dorfman A: The biosynthesis of chondroitin sulfate. Arch Biochem Biophys 116: 458–465, 1966

    Google Scholar 

  23. Watkins WM: Genetic regulation of the structure of blood-group-specific glycoprotein. Biochem Soc Symp 40: 125–146, 1974

    Google Scholar 

  24. Hakomori S: Blood group ABH and li antigens of human erythrocytes: chemistry polymorphism, and their developmental changes. Semin Hematol 18: 39–62, 1981

    Google Scholar 

  25. Kabat EA: Philip Levine award lecture. Contributions of quantitative immunochemistry to knowledge of blood group A, B, H, Le, 1 and i antigens. Am J Clin Path 78: 281–292, 1982

    Google Scholar 

  26. Feizi T: The blood group li system: a carbohydrate antigen system defined by naturally monoclonal or oligoclonal autoantibodies of man. Immun Commun 10: 127–156

  27. Taft EG, Propp RP, Sullivan SA: Plasma exchange for cold agglutinin hemolytic anemia. Transfusion 17: 173–176, 1977

    Google Scholar 

  28. Pruzanski W, Cowan DH, Parr DM: Clinical and immunochemical studies of IgM cold agglutinins with lambda type light chains. Clin Immunol Immunopath 2: 234–245, 1974

    Google Scholar 

  29. Gooi HC, Uemura K, Edwards PAW, Foster CS, Pickering N, Geizi T: Two mouse hybridoma antibodies against human milk-fat globules recognize the I (Ma) antigenic determinant β-D-Galp (1,4-β-D-GlcNAc(1,6)). Carbohydr Res 120: 293–302, 1983

    Google Scholar 

  30. Lemieux RU, Wong TC, Liao J, Kabat EA: The combining site of anti-l Ma (Group 1). Mol Immun 21: 751–759, 1984

    Google Scholar 

  31. Jyer RN, Carlson DM: Alkaline borohydride degradation of blood group H substance. Arch Biochem Biophys 142: 101–105, 1971

    Google Scholar 

  32. Dube VE, Kallio P, Tanaka M: Specificity of the monoclonal anti-l antibody (Hy). Molec Immun 2: 217–220, 1986

    Google Scholar 

  33. Wu AM, Kabat EA, Nilsson B, Zopf DA, Gruezo FG, Liao J: Immunochemical studies on blood groups. Purification and characterization of radioactive3H-reduced dito hexasaccharides produced by alkaline β-elimination-borohydride3H reduction of Smith degraded blood group A active glycoproteins. J Biol Chem 259: 7178–7186, 1986

    Google Scholar 

  34. Lloyd KO, Kabat EA, Licerio E: Immunochemical studies on blood groups. XXXVIII. Structures and activities of oligosaccharides produced by alkaline degradation of blood group Lewisa substance. Proposed structure of the carbohydrate chains of human blood group A, B, H, Lea, and Leb substances. Biochemistry 7: 2976–2990, 1968

    Google Scholar 

  35. Havez R, Roussel P, Degand P, Lamblin G: Etude des structures fibrillaires de la secretion bronchique humaine. Expo Annu Biochim Med 32: 121–148, 1973

    Google Scholar 

  36. Lamblin G, Boersma A, Klein A, Roussel P, Van Halbeek H, Vliegenthart JFG: Primary structure determination of five sialylated oligosaccharides derived from bronchial mucus glycoproteins and patients suffering from cystic fibrosis. The occurrence of the NeuAcα(2,3)Galβ [Fucα (1, 3)]GlcNAcβ (1) Structural element revealed by 500-MHz1H NMR spectroscopy. J Biol Chem 259: 9051–9058, 1984

    Google Scholar 

  37. Lamblin G, Degand P, Roussel P, Havez R, Hartemann E, Fillat M: Les glycopeptides du mucus bronchique fibrillaire dans la mucoviscidose. Clin Chim Acta 36: 329–340, 1972

    Google Scholar 

  38. Roussel P, Degand P, Randoux Z, Moschetto Y, Hermier M, Havez R: Colloque international de pathologie thoracique lille (hypersecretion bronchique), Poinsot Clinchy (France), pp 155–162, 1968

    Google Scholar 

  39. Podolsky DK: Oligosaccharide structures of human colonic mucin. J Biol Chem 260: 8262–8271, 1985

    Google Scholar 

  40. Kaizu T, Levery SB, Nudelman E, Stenkamp RE, Hakomori S: Novel fucolipids of human adenocarcinoma: monoclonal antibody specific for trifucosyl Ley (III3Fuc V3Fuc VI3FucnLc6) and a possible three-dimensional epitope structure. J Biol Chem 261: 11254–11258, 1986

    Google Scholar 

  41. Nudelman E, Levery SB, Kaizu T, Hakomori S: Novel fucolipids of human adenocarcinoma as trifucosylnonaosyl Ley glycolipid. (III3FucV3FucVI2FucnLc6). J Biol Chem 261: 11247–11253, 1986

    Google Scholar 

  42. Kurosaka A, Nakajima H, Funakoshi I, Matsuyama M, Nagayo T, Yamashina I: Structures of the major oligosaccharides from a human rectal adenocarcinoma glycoprotein. J Biol Chem 258: 11594–11598, 1983

    Google Scholar 

  43. Shi ZR, McIntyre LJ, Knowles BB, Solter D, Kim YS: Expression of a carbohydrate differentiation antigen, stage-specific embryonic antigen 1 in human colonic adenocarcinoma. Cancer Res 44: 1142–1147, 1984

    Google Scholar 

  44. Springer GF, Desai PR, Banatwala I: Blood group MN antigens and precursors in normal and malignant human breast glandular tissue. J Natl Cancer Inst 54: 335–339, 1975

    Google Scholar 

  45. Springer GF, Desai PR, Scanlon EF: Blood group MN precursors as human breast carcinoma-associated antigens and ‘naturally’ occurring human cytotoxins against them. Cancer 37: 169–176, 1976

    Google Scholar 

  46. Wiseman G, Bramwell ME, Bhavanandan VP, Harris H: The structure of the Ca-antigen. Biochem Soc Trans 12: 537–538, 1984

    Google Scholar 

  47. Salmon CH: Blood group precursors in tumour associated antigens. In: Peeters H (ed) Protides of Biological Fluids. Pergamon Press, 27th Colloquium Oxford, 1979, pp 85–88

  48. Watanabe K, Hakomori SI: Status of blood group carbohydrate chains in ontogenesis and in oncogenesis. J Expl Med 144: 644–654, 1976

    Google Scholar 

  49. Ernst C, Atkinson B, Wysocka M, Blaszczyk M, Herlyn M, Sears H, Steplewski Z, Kaprowski H: Monoclonal antibody localization of Lewis antigens in fixed tissue. International Academy of Pathology 50: 4–39, 1984

    Google Scholar 

  50. Mizuochi T, Nishimura R, Derappe C, Taniguchi T, Hamamoto T, Mochizuki M, Kobata A: Structures of the asparagine-linked sugar chains of human chorionic gonadotropin produced in choriocarcinoma. J Biol Chem 258: 14126–14129, 1983

    Google Scholar 

  51. Santer UV, Glick MC: Presence of fucosyl residues on the oligosaccharide antennae of membrane glycopeptides of human neuroblastoma cells. Cancer Res 43: 4159–4166, 1983

    Google Scholar 

  52. Wagner DD, Ivatt R, Destree AT, Hynes RO: Similarities and differences between the fibronectins of normal and transformed hamster cells. J Biol Chem 256: 11708–11715, 1981

    Google Scholar 

  53. Michols EJ, Fenderson BA, Carter WG, Hakomori S: Domain-specific distribution of carbohydrates in human fibronectins and the transformation-dependent translocation of branched type 2 chain defined by monoclonal antibody C6. J Biol Chem 261: 11295–11301, 1986

    Google Scholar 

  54. Alm R, Eriksson S: Biosynthesis of abnormally glycosylated hepatoma secretory proteins in cell cultures. FEBS Lett 190: 157–160, 1985

    Google Scholar 

  55. Klohs WD, Mastrangelo R, Welser MM: Release of glycosyltransferase and glycosidase activities from normal and transformed cell lines. Cancer Res 41: 2611–2615, 1981

    Google Scholar 

  56. Kijimoto-Ochiai S, Makita A, Kameya T, Kodama T, Araki E, Yoneyama T: Elevation of glycoprotein galactosyltransferase activity in human lung cancer related to histological types. Cancer Res 41: 2931–2935, 1981

    Google Scholar 

  57. Chatterjee SK, Bhattacharya M, Barlow JJ: Biochemical and immunologic characterization of galactosyltransferase purified from the ascites of ovarian cancer patients. J Natl Can Inst 75: 237–248, 1985

    Google Scholar 

  58. Chatterjee SK, Bhattacharya M, Barlow JJ: Murine monoclonal antibodies against galactosyltransferase from the ascites of ovarian cancer patients. Cancer Res 44: 5722–5732, 1984

    Google Scholar 

  59. Podolsky DK, Weiser MM: Detection, purification and characterization of a human cancer-associated galactosyltransferase acceptor. Biochem J 178: 279–287, 1979

    Google Scholar 

  60. Podolsky DK, Weiser MM, Isselbacher KJ: Inhibition of growth of transformed cells and tumors by an endogenous acceptor of galactosyltransferase. Proc Natl Acad Sci USA 75: 4426–4430, 1978

    Google Scholar 

  61. Ivanov S, Gavazova E, Antonova M, Chalibonova-Loren H: Studies on N-acetyl-neuraminic acid biosynthesis in chicken liver and hepatoma Mc-29 by using14C-N-acetyl-mannosamine and14C-glucosamine. Int J Biochem 17: 1125–1128, 1985

    Google Scholar 

  62. Atkinson MA, Bramwell ME: Studies on the surface properties of hybrid cells, II sialyl-transferase activity on the surface of malignant and non-malignant cells. J Cell Sci 46: 203–220, 1980

    Google Scholar 

  63. Bosmann HB, Hall TC: Enzyme activity in invasive tumors of human breast and colon. Proc Natl Acad Sci USA 71: 1833–1837, 1974

    Google Scholar 

  64. Weiser MM, Wilson JR: Serum levels of glycosyltransferases and related glycoproteins as indicators of cancer: biological and clinical implication. CRC Crit Rev Clin Lab Sci pp. 189–239, 1981

  65. Kessel D, Alen J: Elevated plasma sialyltransferase in the cancer patient. Cancer Res 35: 690–672, 1975

    Google Scholar 

  66. Kessel D, Chou TH, Henderson M: Determinants of fucosyltransferase levels in plasma of the cancer patient. Proc Am Assoc Cancer Res 17: 16, 1976

    Google Scholar 

  67. Weiser MM, Podolsky DK, Isselbacher KJ: Cancer-associated isoenzyme of serum galactosyltransferase. Proc Natl Acad Sci USA 73: 1319–1322, 1976

    Google Scholar 

  68. Sasaki M, Barber S, Ceriani RL: Breast cancer markers: comparison between sialyltransferase and human mammary epithelial antigens (HME-Ags) for the detection of human breast tumors grafted in nude mice. Breast Cancer Res Treatment 5: 51–56, 1985

    Google Scholar 

  69. Bhattacharya M, Chatterjee SK, Barlow JJ: Uridine 5′-diphosphate-galactose: glycoprotein galactosyltransferase activity in the ovarian cancer patient. Cancer Res 36: 2096–2101, 1976

    Google Scholar 

  70. Lange PH, Raghavan D: Clinical applications of tumor markers in testicular cancer. In: Donohue JP (ed) Testis Tumor. The Williams & Wilkins Co., Baltimore, 1983, pp 111–140

    Google Scholar 

  71. Lange PH, Vogelzang NJ, Goldman A, Kennedy BJ, Fraley EE: Marker half-life analysis as a prognostic tool in testicular cancer. J Urol 128: 708–711, 1982

    Google Scholar 

  72. Norgaard-Pederson B: Human alpha-fetoprotein. A review of recent methodological and clinical studies. Scand J Immunol Suppl 4: 7–45, 1976

    Google Scholar 

  73. Vessella RL, Santrach MA, Bronson D, Smith CJ, Klicka MJ, Lange PH: Evaluation of AFP glycosylation heterogeneity in cancer patients with AFP producing tumors. Int J Cancer 34: 309–314, 1984

    Google Scholar 

  74. Bosl GJ, Geller NL, Cirrincione C, Vogelzang JJ, Kenney BJ, Whitmore WF Jr, Vugrin D, Scher H, Nisselbaum J, Golbey RB: Multivariate analysis of prognostic variables in patients with metastatic testicular cancer. Cancer Res 43: 3403–3407, 1983

    Google Scholar 

  75. Gold P, Freedman S: Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J Exp Med 121: 439–462, 1965

    Google Scholar 

  76. Krypey J, Gold P, Freedman SO: Physiochemical studies of the carcinoembryonic antigens of the human digestive system. J Exp Med 128: 387–398, 1968

    Google Scholar 

  77. Thomson DMP, Krypey J, Feedman SO, Gold P: The radioimmunoassay of circulating carcinoembryonic antigen of the human digestive system. Proc Natl Acad Sci USA 64: 161–167, 1969

    Google Scholar 

  78. Magnani JL, Nilsson B, Brockhaus M, Zopf D, Steplewski Z, Koprowski H, Ginsburg V: A monoclonal antibodydefined antigen associated with gastrointestinal cancer in a ganglioside containing sialylated lacto-N-fucopentaose II. J Biol Chem 257: 14365–14369, 1982

    Google Scholar 

  79. Magnani JL, Steplewsk Z, Koprowski H, Ginsburg V: Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19–9 in the sera of patients as a mucin. Cancer Res 43: 5489–5492, 1983

    Google Scholar 

  80. Bast RC Jr, Siegal FP, Runowicz C, Klug TL, Zurawski VR, Schonholz D, Cohen CJ, Knapp RC: Elevation of serum CA 125 prior to diagnosis of an epithelial ovarian carcinoma. Gynecol Oncol 22: 115–120, 1985

    Google Scholar 

  81. Dube VE, Anderson B: Expression of I antigen and anti-1 cold agglutinins in sera of patients with possible pre-cancerous breast lesions. Carcino-Embryonic Proteins 2: 905–908, 1979

    Google Scholar 

  82. Dube VE, Kallio P, Sander Chiel J, Haid M, Dohnal J: Carbohydrate specific structures of blood group I antigens in breast carcinoma in women (submitted)

  83. Schmid K, Mao SKY, Kimura A, Hayashi S, Binette JP: Isolation and characterization of a serine-threonine-rich galactoglycoprotein from normal human plasma. J Biol Chem 255: 3221–3226, 1980

    Google Scholar 

  84. Winzler RJ, Bekesi JG: Glycoproteins in relation to cancer. In: Busch H (ed) Methods in Cancer Research Vol II. Academic Press, New York, 1955, pp 279–202

    Google Scholar 

  85. Macbeth RAL, Bekesi JG: Plasma glycoproteins in various disease states including carcinoma Cancer Res 22: 1170–1176, 1962

    Google Scholar 

  86. Winzler RJ: Determination of serum glycoproteins. In: Glick D (ed) Methods of Biochemical Analysis, Vol II. Interscience Publishers, New York, 1955, pp 279–311

    Google Scholar 

  87. Rosato FE, Seltzer M, Mullen J, Tosato EF: Serum fucose in the diagnosis of breast cancer. Cancer 28: 1575–1579, 1971

    Google Scholar 

  88. Barlow JJ, Dillard PH: Serum protein-bound fucose in patients with gynecologic cancers. Obstet Gynec 39: 727–734, 1972

    Google Scholar 

  89. Evans AS, Dolan MF, Sobocinski PZ, Quinn FA: Utility of serum protein-bound neutral hexoses and L-Fucose for estimation of malignant tumor extension and evaluation of efficacy of therapy. Cancer Res 34: 538–542, 1974

    Google Scholar 

  90. Alper CA: Plasma protein measurements as a diagnostic aid. N Engl J Med 291: 287–290, 1974

    Google Scholar 

  91. Hakim AA, Siraki CM, Joseph CE: Carinoembryonic antigen induces defective lymphocyte function. Role of oligosaccharide moiety. Fed Proc 43: 1714, 1984

    Google Scholar 

  92. Hakim AA: Carcinoembryonic antigen, a tumor-associated glycoprotein induces defective lymphocyte function. Neoplasma 31: 385–397, 1984

    Google Scholar 

  93. Reading CL, Hutchins JT: Carbohydrate structure in tumor immunity. Cancer Metast Rev 4: 221–260, 1985

    Google Scholar 

  94. Hakomori S: Tumor-associated carbohydrate antigens. Ann Rev Immunol 2: 103–126, 1984

    Google Scholar 

  95. Warren L, Buck CA, Tuszynski GP: Glycopeptide changes and malignant transformation a possible role for carbohydrate in malignant behavior. Biochimica et Biophysica Acta 516: 97–127, 1978

    Google Scholar 

  96. Mareel MM, Dragonetti CH, Hooghe RJ, Bruyneel E: Effect of inhibitors of glycosylation and carbohydrate processing on invasion of malignant mouse MO4 cells in organ culture. Clin Exp Metastasis 3: 197–207, 1985

    Google Scholar 

  97. Barnett SC, Eccles SA: Studies of mammary carcinoma metastasis in a mouse model system. II: Lectin binding properties of cells in relation to the incidence and organ distribution of metastasis. Clin Exp Metastasis 2: 297–310, 1984

    Google Scholar 

  98. Reading CL: Carbohydrate structure, biological recognition, and immune function. In: Ivatt RJ (ed) The Biology of Glycoproteins. Plenum Press, New York, 1984, pp 235–321

    Google Scholar 

  99. Coffey RJ, Shipley GD, Moses HL: Production of transforming growth factors by human colon cancer lines. Cancer Res 46: 1164–1169, 1986

    Google Scholar 

  100. Grignani G, Pacchiarini L, Almaso P, Pagliarino M, Gamba G, Rizzo SC, Ascari E: Characterization of the platelet-aggregating activity of cancer cells with different metastatic potential. Int J Cancer 38: 237–244, 1986

    Google Scholar 

  101. Graves DT, Owen AJ, Antoniades HN: Evidence that a human osteosarcoma cell line which secretes a mitogen similar to platelet-derived growth factor requires growth factors present in platelet-poor plasma. Cancer Res 43: 83–87, 1983

    Google Scholar 

  102. Baker FL, Spitzer G, Ajani JA, Brook WA, Lukeman J, Pathak S, Tomasovic B, Thielvoldt D, Williams M, Vines C, Tofilon P: Drug and radiation sensitivity measurements of successful primary monolayer-matrix culturing of human tumor cells using cell-adhesive and supplemented medium. Cancer Res 46: 1263–1274, 1986

    Google Scholar 

  103. Cerny T, Barnes DM, Hasteton P, Barber PV, Healy K, Gullick W, Thatcher N: Expression of epidermal growth factor receptor (EGF-R) in human lung tumours. Br J Cancer 54: 265–269, 1986

    Google Scholar 

  104. Hakim AA, Siraki CM, Dube VE: Human embryonic liver cell differentiation. Changes in specific mRNA synthesis correlates with parameters signaling oncologic alterations. Expl Cell Biol (in press)

  105. Fidler JJ, Nicolson GL: The immunobiology of experimental metastatic melanoma. Cancer Bio Res 2: 17–234, 1981

    Google Scholar 

  106. Nicolson GL: Cancer metastasis. Organ colonization and the cell-surface properties of malignant cells. Biochim Biophys Acta 695: 113–176, 1982

    Google Scholar 

  107. Poste G, Fidler JJ: The pathogenesis of cancer metastasis. Nature 283: 139–146, 1980

    Google Scholar 

  108. Sugarbaki L, Weingard DW, Rosman TM: Observations on cancer metastatis in man. In: Liotta LA, Hart IR (eds) Tumor Invasion and Metastasis. Martinus Nijhoff Publishers, Amsterdam, 1982, pp 42–465

    Google Scholar 

  109. Nicolson GL: Cell surface molecules and tumor metastasis. Regulation of metastatic phenotype diversity. Epl Cell Res 150: 3–22, 1984

    Google Scholar 

  110. Roos E: Cellular adhesion, invasion and metastasis. Biochim Biophys Acta 738: 263–284, 1984

    Google Scholar 

  111. Yogeeswaran G, Salk PL: Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science 212: 1514–1516, 1981

    Google Scholar 

  112. Finne J, Tao T, Burger MM: Carbohydrate changes in glycoproteins of a poorly metastasizing wheat germ agglutinin-resistant melanoma clone. Cancer Res 40: 2580–2587, 1980

    Google Scholar 

  113. Dennis JW, Carver JP, Schachter M: Asparagine-linked oligosaccharides in murine tumor cells: comparison of a WGA-resistant (WGAr) non-metastatic mutant and a related WGA-sensitive (WGAs) metastatic line. J Cell Biol 99: 1034–1044, 1984

    Google Scholar 

  114. Liotta LA, Rao CN, Barsky SH: Tumor invasion and the extracellular matrix. Lab Invest 49: 636–649, 1983

    Google Scholar 

  115. Schirrmacher V: Cancer metastasis: experimental approaches, theoretical concepts, and impacts for treatment strategies. Ad Cancer Res 43: 1–73, 1985

    Google Scholar 

  116. Paulik MD, Weiss ML: Ceruloplasmin. In: Putnam RW (ed) The Plasma Proteins (2nd ed). Academic Press, New York, 1975, pp 51–108

    Google Scholar 

  117. Kawai T: Plasma proteins included in the α1-fraction. In: Kawai T (ed) Clinical Aspects of the Plasma Proteins. Lippincott Co., Philadelphia, 1975, pp 18–25

    Google Scholar 

  118. Stoolman LM, Rosen SD: Possible role of cell-surface carbohydrate-binding molecules in lymphocyte recirculation. J Cell Biol 96: 722–729, 1983

    Google Scholar 

  119. Herlyn M, Blaszczyk M, Sears HF, Verrill H, Lindgren J, Colcher D, Steplewski Z, Schlom J, Koprowski H: Detection of carcinoembryonic antigen and related antigens in sera of patients with gastrointestinal tumors using monoclonal antibodies in double-determinant radioimmunoassay. Hybridoma 2: 329–339, 1983

    Google Scholar 

  120. Decker JM, Hinson A, Ades EW: Inhibition of human NK cell cytotoxicity against K562 cells with glycopeptides from K562 plasma membranes. J Clin Lab Immunol 15: 137–143, 1984

    Google Scholar 

  121. Hakim AA: Tumor mediated immunosuppression is a challenge in cancer therapy. Cancer Immunol Immunother 7: 1–12, 1978

    Google Scholar 

  122. Balch CM, Itoh K, Tilden AB: Cellular immune defects in patients with melanoma involving interleukin-2-activated lymphocyte cytotoxicity and a serum suppressor factor. Surgery 98: 151–157, 1986

    Google Scholar 

  123. Yamshita K, Hayashi H, Mure K, Ishikawa M, Shimizu T: Serum immunosuppressive substance in patients with gynecologic malignancies and in pregnant women. Cancer 57: 68–74, 1986

    Google Scholar 

  124. Hakim AA: Cytotoxicity of human peripheral blood T-lymphocyte clones activated by hepatitis B virus surface antigen. Experientia 41: 579–584, 1985

    Google Scholar 

  125. Pimlott NJG, Miller RG: Glycopeptides inhibit allospecific cytotoxic T lymphocyte recognition in an MHC-specific manner. J Immunol 136: 6–11, 1986

    Google Scholar 

  126. Dube VE, Iwaki Y, Anderson B, Terasaki P: Red blood cell cold agglutinins and B lymphocyte cytotoxins in breast cancer sera. Vox Sang 46: 75–79, 1984

    Google Scholar 

  127. Dube VE, Haid M, Chmiel JS, Anderson B: Serum cold agglutinin and IgM levels in breast carcinoma. Breast Carcinoma Threat Res 4: 105–108, 1984

    Google Scholar 

  128. Lemieux RM: The binding of carbohydrate structures with antibodies and lectins. In: Laidler KJ (ed) Frontiers of Chemistry, plenary and keynote lectures presented at IUPAC congress. Pergamon Press, Vancouver B.C., Oxford, 1982

    Google Scholar 

  129. Neurohr KJ, Mantsch HH, Young NM, Bundle DR: Carbon-13 nuclear magnetic resonance studies on lectin-carbohydrate interactions: binding of specifically carbon-13 labelled methyl β-D-lactoside to peanut agglutinin. Biochemistry 21: 498–503, 1982

    Google Scholar 

  130. Narasinga BNN, Dua VK, Bush CA: Conformations of blood group H-active oligosaccharides of ovarian cyst mucins. Biopolymers 24: 2207–2229, 1985

    Google Scholar 

  131. Bush CA, Yan ZY, Rao BNN: Conformational energy calculations and proton nuclear overhauser enhancements reveal a unique conformation for blood group A oligosaccharides. J Am Chem Soc (in press)

  132. Thogersen H, Lemieux RU, Bock K, Meyer B: Further justification for the exo-anomeric effect. Conformational analysis based on nuclear magnetic resonance spectroscopy of oligosaccharides. Can J Chem 60: 44–57, 1982

    Google Scholar 

  133. Bock K: The preferred conformation of oligosaccharides in solution inferred from high resolution NMR data and hard spere exo-anomeric calculations. Pure and Appl Chem 55: 605–622, 1983

    Google Scholar 

  134. Haunsell EF, Wright DJ, Donald ASR, Feeney J: A computerized approach to the analysis of oligosaccharide structure by high-resolution proton NMR. Biochem J 223: 129–143, 1984

    Google Scholar 

  135. Mountford CE, Wright LC, Holmes KT, Mackinnon WB, Gregory P, Fox RM: High-resolution proton nuclear magnetic resonance analysis of metastatic cancer cells. Science 226: 1415–1418, 1984

    Google Scholar 

  136. Bines SD, Tomasovic SP, Frazer JW, Boddie AW Jr: Differences in NMR spectra between tumor clones of defined metastatic potential. J Surg Res 38: 546–552, 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

All sugars are of the D-configuration except fucose, which is of the L-configuration. The notation is indicated for sugars which are α-anomers. Sugars without notations are β-anomers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dube, V.E. The structural relationship of blood group-related oligosaccharides in human carcinoma to biological function: A perspective. Cancer Metast Rev 6, 541–557 (1987). https://doi.org/10.1007/BF00047467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047467

Key words

Navigation