A finite elastostatic analysis of bimaterial interface cracks

Abstract

A numerical method is developed to study the bimaterial interface problem in Neo-Hookean materials under plane stress conditions. Comparison is made with the analytical predictions for the asymptotic field of the problem. The range of dominance of the asymptotic solution at different load levels is established and the amplitudes of the crack-tip asymptotic field are related to the far field loading. The numerical model is extended to analyze the experiments conducted on specimens with an edge crack at the interface between two dissimilar Solithane plates that are characterized by Mooney-Rivlin material behavior.

Résumé

On met au point une méthode numérique pour l'étude d'un problème d'interfaces entre deux matériaux néo-Hookiens sollicités en état plan de tension. On compare les résultats avec les prédictions analytiques étabiies pour un champ asymptotique. On établit la gamme dans laquelle la solution asymptotique est dominante, à différents niveaux de charge, et on met en relation l'ampleur du champ asymptotique à l'extrémité de la fissure avec celle du champ de contraintes à une certaine distance. Le modèle numérique est étendu à l'analyse d'essais sur éprouvettes comportant une fissure de bord à l'interface de deux tôles de Solithane caractérisée par un comportement de matériau de Mooney-Rivlin.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M.L. Williams, Bulletin of the Seismological Society of America 49(2) (1959) 199.

    Google Scholar 

  2. 2.

    A.H. England, Journal of Applied Mechanics 32(2) (1965) 400.

    Google Scholar 

  3. 3.

    J.R. Rice and G.C. Sih, Journal of Applied Mechanics 32(2) (1965) 418.

    Google Scholar 

  4. 4.

    J.K. Knowles and E. Sternberg, Journal of Elasticity 13 (1983) 257.

    Google Scholar 

  5. 5.

    C.F. Shih and R.J. Asaro, “Elastic-plastic analysis of cracks on bimaterial interfaces. Part I: Small scale yielding,” Brown University Report, March (1987).

  6. 6.

    W.G. Knauss and H.K. Mueller, “The mechanical characterization of Solithane 113 in the swollen and unswollen state”, GALCIT SM 67–8, California Institute of Technology, Pasadena, CA (1968).

    Google Scholar 

  7. 7.

    J.T. Oden, Finite Elements of Nonlinear Continua, McGraw-Hill, New York (1972).

    Google Scholar 

  8. 8.

    B. Moran and C.F. Shih, Engineering Fracture Mechanics 27(6) (1987) 615.

    Google Scholar 

  9. 9.

    R.L. Taylor, in The Finite Element Method by O.C. Zienkiewicz, McGraw-Hill, London (1977).

    Google Scholar 

  10. 10.

    F.S. Wong and R.T. Shield, Zeitschrift für Angewandte Mathematik und Physik 20(2) (1969) 176.

    Google Scholar 

  11. 11.

    A.J. Rosakis and K. Ravi-Chandar, International Journal of Solids and Structures 22(2) (1986) 121.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ravichandran, G., Knauss, W.G. A finite elastostatic analysis of bimaterial interface cracks. Int J Fract 39, 235–253 (1989). https://doi.org/10.1007/BF00047452

Download citation

Keywords

  • Numerical Model
  • Civil Engineer
  • Plane Stress
  • Asymptotic Solution
  • Material Behavior