Skip to main content
Log in

Effect of crosslink type on the fracture of natural rubber vulcanizates

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The effect of the chemical nature of the crosslinks on the fatigue crack growth behavior of filled natural rubber has been investigated. By varying the ratio of sulfur to accelerator, the relative amounts of polysulfidic to monosulfidic crosslinks was controlled. Carbon-carbon crosslinking was introduced via peroxide cure. All elastomers tested were prepared at the same number average crosslink density as confirmed by equilibrium swelling and modulus measurements. At the same crosslink density, polysulfidic crosslinks were most resistant to fatigue over the range of tearing energies investigated. Vulcanizates with primarily monosulfidic crosslinks exhibited lower cut growth rates than peroxide cured specimens, although the monosulfidic network strength may have been enhanced by the presence of some polysulfidic crosslinks.

Résumé

On a étudié l'effet de la nature chimique des liaisons dans le caoutchouc naturel sur son comportement à la propagation des fissures de fatigue. On contrôle la quantité relative de liaisons polysulfurées par rapport aux liaisons monosulfurées en faisant varier le rapport soufre-accélérateur de réaction. Par une vulcanisation sous peroxyde, on peut introduire des liaisons C-C. Tous les élastomères soumis à essais ont été préparés une même valeur moyenne de densité de liaisons, ce qui est confirmé par le gonflement à l'équilibre et par des mesures de module. A même densité de liaison, les liaisons polysulfurées se révèlent les plus résistantes en fatigue, sur la gamme des énergies d'arrachement étudiée. Des composants vulcanisés à liaisons principalement monosulfuruées ont montré des vitesses de croissance d'une entaille plus faibles que des éprouvettes vulcanisées sous peroxyde, bien que la résistance du réseau mono-sulfuré puisse avoir été accrue par la présence de quelques liaisons polysulfurées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Lake and A.G. Thomas, Proceedings Royal Society (London) A300 (1967) 108.

    Google Scholar 

  2. A.K. Bhowmick, A.N. Gent and C.T.R. Pulford, Rubber Chemistry and Technology 56 (1983) 226.

    Google Scholar 

  3. M.J. Wang and F.N. Kelley, unpublished report (1986).

  4. C.M. Kok and V.H. Yee, European Polymer Journal 22 (1986) 341.

    Google Scholar 

  5. L.C. Bateman et al. in The Chemistry and Physics of Rubber-Like Substances, John Wiley and Sons, New York (1963) 715.

    Google Scholar 

  6. J. Lal, Rubber Chemistry and Technology 43 (1970) 664.

    Google Scholar 

  7. H.W. Greensmith et al., in The Chemistry and Physics of Rubber-Like Substances, John Wiley and Sons, New York (1963) 249.

    Google Scholar 

  8. L.C. Yanyo and F.N. Kelley, Rubber Chemistry and Technology 60 (1987) 78.

    Google Scholar 

  9. J.A. Brydson, Rubber Chemistry, Applied Sciences, London (1978).

    Google Scholar 

  10. D.S. Pearson and G.G.A. Bohm, Rubber Chemistry and Technology 45 (1972) 193.

    Google Scholar 

  11. R.F. Fedors and R.F. Landel, Transactions Society of Rheology 9.1 (1965) 195.

    Google Scholar 

  12. A.A. Griffith, Philosophical Transactions Royal Society (London) A221 (1921) 163.

    Google Scholar 

  13. A.A. Griffith, Proceedings International Congress of Applied Mechanics (1924) 55.

  14. R.S. Rivlin and A.G. Thomas, Journal of Polymer Science 10 (1953) 291.

    Google Scholar 

  15. P.B. Lindley and S.C. Teo, Plastics and Rubber: Materials and Applications (1979) 29.

  16. G.J. Lake and P.B. Lindley, in Physical Basis of Yield and Fracture: Conference Proceedings, The Institute of Physics and The Physical Society (1966) 176.

  17. A.N. Gent, P.B. Lindley, and A.G. Thomas, Journal of Applied Polymer Science 8 (1964) 455.

    Google Scholar 

  18. A. Stevenson, Rubber Chemistry and Technology 59 (1986) 208.

    Google Scholar 

  19. A. Ahagon, A.N. Gent, H.J. Kim and Y. Kumagai, Rubber Chemistry and Technology 48 (1975) 896.

    Google Scholar 

  20. E.H. Andrews, Journal of the Mechanics and Physics of Solids 11 (1963) 231.

    Google Scholar 

  21. G.J. Lake and P.B. Lindley, Journal of Applied Polymer Science 9 (1965) 1233.

    Google Scholar 

  22. G.J. Lake and P.B. Lindley, Journal of Applied Polymer Science 10 (1966) 343.

    Google Scholar 

  23. P.B. Lindley, International Journal of Fracture 9 (1973) 449–462.

    Google Scholar 

  24. A.N. Gent and R.H. Tobias, Journal of Polymer Science: Polymer Physics Edition 20 (1982) 2051.

    Google Scholar 

  25. L.C. Yanyo and F.N. Kelley, Rubber Chemistry and Technology 60 (1987) 78.

    Google Scholar 

  26. G.J. Lake and P.B. Lindley, Journal of Applied Polymer Science 8 (1964) 707.

    Google Scholar 

  27. A.R. Payne and R.E. Whittaker, Journal of Applied Polymer Science 15 (1971) 1941.

    Google Scholar 

  28. P.J. Flory, in Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY (1953) 579.

    Google Scholar 

  29. G. Kraus, Rubber World 135 (1956) 67.

    Google Scholar 

  30. B. Saville and A.A. Watson, Rubber Chemistry and Technology 40 (1967) 100.

    Google Scholar 

  31. M.L. Studebaker and L.G. Nabor, Rubber Chemistry and Technology 40 (1967) 100.

    Google Scholar 

  32. M.L. Studebaker and L.G. Nabor, in Proceedings International Rubber Conference, Washington (1959) 237.

  33. A.Y. Coran, Rubber Chemistry and Technology 37 (1964) 668.

    Google Scholar 

  34. J.E. Mark and M.Y. Tang, Journal of Polymer Science: Polymer Physics Edition 22 (1984) 1849.

    Google Scholar 

  35. J.E. Mark, Polymer Journal 17 (1985) 265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanyo, L.C. Effect of crosslink type on the fracture of natural rubber vulcanizates. Int J Fract 39, 103–110 (1989). https://doi.org/10.1007/BF00047443

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047443

Keywords

Navigation