Skip to main content
Log in

Fatigue crack growth by crack tip cyclie plastic deformation: the unzipping model

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A fatigue crack may propagate by the mechanism of crack tip cyclic plastic deformation, by the mechanism of fracture of brittle particles and embrittled grain boundaries,or, often, by a combination of both. Neutnann and Vehoff have made in situ observations of alternate shear decohhesions on two intersecting conjugate slip bands at a crack tip as the basic mechanism of fatigue crack growth. It is a mechanism by plastic deformation.

A micro-mechanism based finite element model is made to simulate the unzipping process of the crack tip shear decohesion mechanism. The calculated crack growth rates by the finite element model agree very well with the measured rates in the intermediate ΔK region of a number of materials

Résumé

La propagation d'une fissure de fatigue peut être due au mécanisme de déformation plastique cyclique de l'extrémité de la fissure, au mécanisme de rupture de portions fragiles et de frontières de grains fragilisées ou, souvent, à une combinaison de ces deux mécanismes.

Neumann et Vehoff ont procédé à des observations in situ des décohésions par cisaillement alterné dans deux bandes de glissement s'intersectant à l'extrémité d'une fissure, et ont décrit ce mécanisme par déformation plastique comme un mécanisme de base de la propagation d'une fissure de fatigue.

En vue de simuler le processus d'ouverture qui régit le mécanisme de décohésion par cisaillement à l'extrémité dame fissure, on élabore un modèle par éléments finis basé sur un mécanisme à échelle microscopique. On trouve que les vitesses de propagation d'une fissure calculées grâce à ce modèle par éléments finis sont en très bon accord lvee les vitesses mesurées dans la zone des ΔK intermédiaries et pour plusieurs matériaux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S. Dugdate, Journal of the Mechanics and Physics of Solids 8 (1960) 100.

    Google Scholar 

  2. J.N. Goodier and F.A. Field, Fracture of Solids, John Wiley, New York (1963) 103.

    Google Scholar 

  3. B.A. Bilby, A.H. Cottrell and K.H. Swinden, Proceedings Royal Society London A 272 (1963) 103.

    Google Scholar 

  4. J.R. Rise, Fatigue Crack Propagation, ASTM STP 415 (1967) 247–311.

    Google Scholar 

  5. N. Levy, P.V. Marcal, W.J. Ostergren, and J. Rice, International Journal of Fracture Mechanics 7 (1971) 143–156.

    Google Scholar 

  6. J.R. Rice and E.P. Sorensen, Journal of the Mechanics and Physics of Solids 26 (1978) 163.

    Google Scholar 

  7. R.M. McMeeking, Journal of the Mechanics and Physics of Solids 25 (1977) 357.

    Google Scholar 

  8. C.F. Shih, General Electric Company, TIS Report No. 79CR075, (April 1979).

  9. F.A. McClintock, Fatigue Crack Propagation, ASTM STP 415 (1967) 170.

    Google Scholar 

  10. E. Orowan, Report of Progress in Physics 12 (1949) 185.

    Google Scholar 

  11. A.J. McEvily and R.C. Boettner, Acta Metallurgica 11 (1963) 725.

    Google Scholar 

  12. C. Laird, Fatigue Crack Propagation, ASTM STP 415 (1967) 131.

    Google Scholar 

  13. R.M.N. Pellous, Transactions ASM 62 (1969) 281.

    Google Scholar 

  14. B. Tomkins, Philosphical Magazine 18 (1968) 1041.

    Google Scholar 

  15. V.P. Neumann, Z. Metallkde 58 (1967) 780.

    Google Scholar 

  16. P. Neumann, Acta Metallurgica 22 (1974) 1155.

    Google Scholar 

  17. H. Vehoff and P. Neumann, Acta Metallurgica 27 (1979) 915.

    Google Scholar 

  18. R.D. Heidenriech and W. Shockley, in Report of Conference on Strength of Solids, Physical Society of London (1948) 57.

  19. M.L. Williams, Journal of Applied Mechanics 24 (1957) 109–114.

    Google Scholar 

  20. G.R. Irwin, Journal of Applied Mechanics 24 (1957) 361.

    Google Scholar 

  21. A.S. Kuo and H.W. Liu, Scripta Metallurgica 10 (1976) 723.

    Google Scholar 

  22. A.S. Kuo, “An Experimental and FEM Study on Crack Opening Displacement and Its Application to Fatigue Crack Growth,” Ph.D. dissertation, Syracuse University (1976).

  23. C.Y. Yang, “Modelling of Crack Tip Deformation with Finite Element Method and Its Application,” Ph.D. dissertation, Syracuse University (1979).

  24. R.C. Bates and W.C. ClarkJr., Transactions ASM 62 (1969) 380.

    Google Scholar 

  25. G.T. Hahn, R.C. Hoagland, and A.R. Rosenfield, Contract AF 33616–70-C-1630, Battelle Memorial Institute, Columbus, Ohio, August 1971.

    Google Scholar 

  26. L. Barsom, Damage Tolerance in Aircraft Structures, ASTM STP 486 (1971) 1–15.

    Google Scholar 

  27. H. Kobayashi, H. Nakamura, and H. Nakazawa, in Proceedings 3rd International Conference on Mechanical Behavior of Materials, Pergamon Press, 3 (1979) 529.

  28. H.W. Liu, C.Y. Yang, and A.S. Kuo, in Proceedings of the International Symposium on Fracture Mechanics, George Washington University, Washington, DC, September 1978.

  29. H.W. Liu and H. Kobayashi, Scripta Metallurgica 14 (1980) 525–530.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H.W. Fatigue crack growth by crack tip cyclie plastic deformation: the unzipping model. Int J Fract 39, 63–77 (1989). https://doi.org/10.1007/BF00047440

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047440

Keywords

Navigation