Skip to main content
Log in

Catastrophe modelling in the biological sciences

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Catastrophe Theory was developed in an attempt to provide a form of Mathematics particularly apt for applications in the biological sciences. It was claimed that while it could be applied in the more conventional “physical” way, it could also be applied in a new “metaphysical” way, derived from the Structuralism of Saussure in Linguistics and Lévi-Strauss in Anthropology.

Since those early beginnings there have been many attempts to apply Catastrophe Theory to Biology, but these hopes cannot be said to have been fully realised.

This paper will document and classify the work that has been done. It will be argued that, like other applied Mathematics, applied Catastrophe Theory works best where the underlying laws are securely known and precisely quantified, requiring those same guarantees as does any other branch of Mathematics when it confronts a real-life situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, J.H., Barke R.A. and Cerra, F.B. (1984). Quantitative evaluation of clinical course in surgical ICU patients: The data conform to catastrophe theory.- J. Trauma 24: 1028–1037.

    Google Scholar 

  • Ainsworth, S. (1979). The exponential model for a regulatory enzyme: Its extension to describe catastrophic changes in function.- J. Theor. Biol. 77: 27–35.

    Google Scholar 

  • Allesso, H.P. (1978). Reliability analysis of the elementary catastrophe theory model of muscle contraction.- Eng. Med. Inst. Mech. Eng. 7: 21–30.

    Google Scholar 

  • Anan, Y. and Gō, N. (1979). Solitary wave and spatially locked solitary pattern in a chemical reaction system.- J. Theor. Biol. 80: 171–183.

    Google Scholar 

  • Argémi, J., Gola, M. and Chagneux, H. (1979). Qualitative analysis of a model generating long potential waves in Ba-treated nerve cells — I. Reduced systems.- Bull. Math. Biol. 41: 665–686.

    Google Scholar 

  • Argémi, J., Gola, M. and Chagneux, H. (1980). Qualitative analysis of a model generating long potential waves in Ba-treated nerve cells — II. Complete system.- Bull. Math. Biol. 42: 221–238.

    Google Scholar 

  • Argémi, J., Chagneux, H., Ducreux, C. and Gola, M. (1984). Qualitative study of a dynamical system for metrazol-induced paroxysmal depolarization shifts.- Bull. Math. Biol. 46: 903–922.

    Google Scholar 

  • Arnold, V.I. (1984). Catastrophe Theory (Trans. R.K. Thomas).- Berlin, Springer.

    Google Scholar 

  • Barrett, T.W. (1979). Polyelectrolyte hysteresis interpreted as singularities in the Poisson-Boltzman distribution.- J. Theor. Biol. 77: 523–536.

    Google Scholar 

  • Barrett, T.W. (1980). Energy transfer dynamics.- Adv. Biol. Med. Phys. 17: 1–82.

    Google Scholar 

  • Barrett, T.W. (1981). Energy transfer and molecular switching: I. The nerve action potential.- J. Theor. Biol. 92: 185–207.

    Google Scholar 

  • Barrett, T.W. (1982a). Energy transfer as parametric excitation: An examination of nonlinearity in enzymatic reaction, nerve conduction, muscle contraction, electron tunneling, and electron transfer.- Physiol. Chem. Phys. 14: 249–279.

    Google Scholar 

  • Barrett, T.W. (1982b). Energy transfer and molecular switching: II. Muscle contraction and enzymatic reactions.- J. Theor. Biol. 99: 293–307.

    Google Scholar 

  • Barrett, T.W. (1984). Energy transfer and molecular switching: III. Electron tunneling and electron transfer.- Spec. Sci. Tech. 7: 155–163.

    Google Scholar 

  • Bazin, M.J. and Saunders, P.T. (1978). Determination of critical variables in a microbial predator-prey system by catastrophe theory.- Nature 275: 52–54.

    Google Scholar 

  • Bazin, M.J. and Saunders, P.T. (1979). An application of catastrophe theory to the study of a switch in Dictostelium discoidum. In: R. Thomas, ed. Kinetic Logic, A Boolean Approach to the Analysis of Complex Regulatory Systems.- Berlin, Springer.

    Google Scholar 

  • Bellairs, R. (1979). The mechanism of somite segmentation in the chick embryo.- J. Embryol. Exp. Morph. 51: 227–243.

    Google Scholar 

  • Bogin, B. (1980). Catastrophe model for the regulation of human growth.- Hum. Biol. 52: 215–227.

    Google Scholar 

  • Boudon, R. (1968). A quoi sert la notion de ‘structure’? - Paris, Gallimard. Trans. (M. Vaughan, 1971) as The Uses of Structuralism.- London, Heinemann.

    Google Scholar 

  • Brauer, F. and Soudack, A.C. (1979). Stability regions and transition phenomena for harvested predator-prey systems.- J. Math. Biol. 7: 319–337.

    Google Scholar 

  • Brent, S.B. (1978). Prigogine's model for self-organisation in nonequilibrium systems: Its relevance for development psychology.- Hum. Dev. 21: 374–387.

    Google Scholar 

  • Brown, R.L.W. (1983). Evolutionary game dynamics in diploid populations.- Theor. Pop. Biol. 24: 313–322.

    Google Scholar 

  • Burgess, A.M.C. (1983). On the role of the notochord in somite formation and the possible evolutionary significance of the concomitant cell re-orientation.- J. Anat. 136: 829–835.

    Google Scholar 

  • Callahan, J. (1982). A geometric model of anorexia and its treatment.- Behav. Sci. 27: 1404–154.

    Google Scholar 

  • Casti, J. (1982). Catastrophes, control and the inevitability of spruce budworm outbreaks.- Ecol. Model. 14: 293–300.

    Google Scholar 

  • Clark, C.W. and Mangel, M. (1979). Aggregation and fishery dynamics: A theoretical study of schooling and purse seine tuna fisheries.- Fishery Bull. 77: 317–337.

    Google Scholar 

  • Cobb, L. (1980). Estimation theory for the cusp catastrophe theory model. Proceedings of the Section on Survey Research Methods, Washington, D.C., American Statistical Association.

    Google Scholar 

  • Cobb, L. (1981). Parameter estimation for the cusp catastrophe model.- Behav. Sci. 26: 75–78.

    Google Scholar 

  • Cobb, L. and Zacks, S. (1985). Applications of catastrophe theory for statistical modeling in the biosciences.- J. Am. Stat. Assn. 80: 793–802.

    Google Scholar 

  • Colgan, P.W., Nowell, W.A. and Stokes, N.W. (1981). Spatial aspects of nest defence by pumpkinseed sunfish (Lepomus Gibbosus): Stimulus features and an application of catastrophe theory.- Anim. Behav. 29: 433–442.

    Google Scholar 

  • Cooke, J. (1979). Cell number in relation to primary pattern formation in the embryo of Xenopus laevis II. Sequential cell recruitment, and the control of the cell cycle, during mesoderm formation.- J. Embryol. Exp. Morph. 58: 107–118.

    Google Scholar 

  • Cronin, J. (1981). Mathematics of Cell Electrophysiology.- New York, Marcel Dekker.

    Google Scholar 

  • Culler, J.D. (1976). Saussure.- Glasgow, Fontana.

    Google Scholar 

  • Davidson, D. (1983a). The mechanism of feather pattern development in the chick: I. The time of determination of feather position.- J. Embryol. Exp. Morph. 74: 245–259.

    Google Scholar 

  • Davidson, D. (1983b). The mechanism of feather pattern development in the chick: II. Control of the sequence of pattern formation.- J. Embryol. Exp. Med. 74: 261–273.

    Google Scholar 

  • Deakin, M.A.B. (1973) A further paradox of the two-locus model.- Aust. J. Biol. Sci. 26: 1443–1444.

    Google Scholar 

  • Deakin, M.A.B. (1980). Applied catastrophe theory in the social and biological sciences.- Bull. Math. Biol. 42: 647–679.

    Google Scholar 

  • Dodson, M.M. (1975). Quantum evolution and the fold catastrophe.- Evol. Th. 1: 107–118.

    Google Scholar 

  • Dujardin, L. and Walbaum, S. (1985). Apport de la théorie des catastrophes ä la description de la morphogénèse de Candida albicans. Physiol. Veg. 23: 309–320.

    Google Scholar 

  • Elsdale, T. and Davidson, D. (1983). Somitogenesis in amphibia: IV. The dynamics of tail development.- J. Embryol. Exp. Morph. 76: 157–176.

    Google Scholar 

  • Elsdale, T. and Pearson, M. (1979). Somitogenesis in amphibia: II. Origins in early embryogenesis of two factors involved in somite specification.- J. Embryol. Exp. Morph. 53: 245–267.

    Google Scholar 

  • Ford, M.J. (1986). The irritable bowel syndrome.- J. Psychosom. Res. 30, 399–410.

    Google Scholar 

  • Frey, P.W. and Sears, R.J. (1978). Model of conditioning incorporating the Rescorla-Wagner associative axiom, a dynamic attention process, and a catastrophe rule.- Psych. Rev. 85: 321–340.

    Google Scholar 

  • Gatto, M. and Rinaldi, S. (1987). Some models of catastrophic behavior in exploited forests.- Vegetatio 69: 213–222.

    Google Scholar 

  • Geiger, G. (1983). On the dynamics of evolutionary discontinuities.- Math. Biosci. 67: 59–79.

    Google Scholar 

  • Gelfant, S. (1983). Psoriasis versus cancer: Adaptive versus iatrogenic human cell proliferative disorders.- Int. Rev. Cyt. 81: 145–162.

    Google Scholar 

  • Gilmore, R. (1981). Catastrophe Theory for Scientists and Engineers.- New York, Wiley.

    Google Scholar 

  • Gola, M., Chagneux, H. and Argémi, J. (1982). An asymmetrical kinetic model for veratridine interactions with sodium channels in molluscan neurons.- Bull. Math. Biol. 44: 231–258.

    Google Scholar 

  • Golubitsky, M. (1978). An introduction to catastrophe theory and its applications. SIAM Rev. 20: 352–387.

    Google Scholar 

  • Guastello, S.J. (1988). Catastrophe modeling of the accident process: Organizational subunit size.- Psych. Bull. 103: 246–255.

    Google Scholar 

  • Guckenheimer, J. (1973). Review of Stabillté structurelle et morphogénèse.- Bull. Am. Math. Soc. 79: 878–890.

    Google Scholar 

  • Guckenheimer, J. (1979). The catastrophe controversy.- Math. Intell. 1: 15–20.

    Google Scholar 

  • Guttinger, W. (1974). Catastrophe theory in physics and biology. In: M. Conrad ed., Physics and Mathematics of the Nervous System. Lecture Notes in Biomathematics 4.- Berlin, Springer, 2–30.

    Google Scholar 

  • Hanusse, P., Ross, J. and Ortoleva, P. (1979). Instability and far-from-equilibrium states of chemically reacting systems.- Adv. Chem. Phys. 38: 317–361.

    Google Scholar 

  • Hines, W.G.S. (1987). Evolutionary stable strategies: A review of basic theory.Theor. Pop. Biol. 31: 195–272.

    Google Scholar 

  • Hughes, A.J. and Lambert, D.M. (1984). Functionalism, structuralism, and ’ways of seeing‘.- J. Theor. Biol. 111: 787–800.

    Google Scholar 

  • Hyver, C. (1980). Plis et fronces dans les systèmes biochimiques.- C.R. Ac. Sci. Paris, Ser. D 290: 1305–1308.

    Google Scholar 

  • Hyver, C., Jerebzoff, S. and Nguyen, V.H. (1979). An attempt to establish a model for the rhythmic phenomena affecting the growth or sporulation of certain fungi.- Chronobiol. 6: 213–228.

    Google Scholar 

  • Jones, D.D. (1977). Catastrophe theory applied to ecological systems.- Simulation 29: 1–15.

    Google Scholar 

  • Kemeny, J.G., Snell, J.L. and Thompson, G.L. (1956). An Introduction to Finite Mathematics.- Englewood Cliffs, N.J., Prentice-Hall.

    Google Scholar 

  • Kempf, J. (1980). Multiple steady states and catastrophes in ecological models.- Int. Soc. Ecol. Manag. J. 2: 55–79.

    Google Scholar 

  • Kempf, J., Duckstein, L. and Casti, J. (1984). Relaxation oscillations and other nonmichaelian behavior in a slow-fast phytoplankton growth model.- Ecol. Model. 23: 67–90.

    Google Scholar 

  • Kharash, J.A. (1987). A membrane-specific tyrosinase chelate: The mitotic regulator. Med. Hyp. 23: 195–207.

    Google Scholar 

  • Kieser, J.A. and Groenweld, H.T. (1985). A threshold model for punctuated gradualism.- Med. Hypoth. 17: 219–225.

    Google Scholar 

  • King, R., Raese, J.D. and Barchas, J.D. (1981). Catastrophe theory of dopaminergic transmission: a revised dopamine hypothesis of schizophrenia.- J. Theor. Biol. 92: 373–400.

    Google Scholar 

  • Kirkaldy-Willis, W.H. and Farfan, H.F. (1982). Instability of the lumbar spine.- Clin. Orthop. Rel. Res. 165: 110–123.

    Google Scholar 

  • Knapp, S. and Mandell, A.J. (1983). Scattering kinetics in a complex tryptophan hydroxylase preparation from rat brainstem raphe nuclei: Statistical evidence that the lithium-induced sigmoid velocity function reflects two states of available catalytic potential.- J. Neur. Trans. 58: 169–182.

    Google Scholar 

  • Koenderink, J.J. (1984). The structure of images.- Biol. Cybem. 50: 363–370.

    Google Scholar 

  • Koenderink, J.J. and van Doom, A.J. (1986). Dynamic shape.- Biol. Cybern. 53: 383–396.

    Google Scholar 

  • Kuyk, W. (1984). A catastrophe theoretic model of heat regulation in homeothermic animals.- Bull. Math. Biol. 46: 81–102.

    Google Scholar 

  • Kuyk, W. (1986). Servocontrol of the heart rate in homeothermic animals: On recognizing butterfly catastrophy models in biology.- Bull. Math. Biol. 48: 107–124.

    Google Scholar 

  • Legay, J.-M. and Gautier, N. (1984). Contribution à une modélisation du developpement morphogénétique de Foeuf de ver a soie (Bombyx coon).- Arch. Biol. (Bruxelles) 95: 429–443.

    Google Scholar 

  • Levine, D.S. (1983). Neural population modeling and psychology: A review.- Math. Biosc. 66: 1–86.

    Google Scholar 

  • Livshits, M.A., Gurija, G.T., Belintsev, B.N. and Volkenstein, M.V. (1981). Positional differentiation as pattern formation in reaction-diffusion systems with permeable boundaries. Bifurcation analysis.- J. Math. Biol. 11: 295–310.

    Google Scholar 

  • Loehle, C. (1985). Optimal stocking for semi-desert range: A catastrophe theory model.- Ecol. Model. 27: 285–297.

    Google Scholar 

  • Loehle, C. (1987). Applications of catastrophe theory. In: B.C. Patten and S.E. Jorgensen, eds. Progress in Systems Ecology.- New York, Elsevier.

    Google Scholar 

  • Louie, A.H. (1983). Categorical system theory.- Bull Math. Biol. 45: 1047–1072.

    Google Scholar 

  • MacCulloch, M.J. and Waddington, J.L. (1979). Catastrophe theory: A model interaction between neurochemical and environmental influences in the control of schizophrenia.- Neuropsychobi. 5: 87–93.

    Google Scholar 

  • Machlup, S. and Sluckin, T.J. (1980). Driven oscillations of a limit-cycle oscillator. J. Theor. Biol. 84: 119–134.

    Google Scholar 

  • Martiel, L. (1980). Modélísation en thermodynamique des processus irreversibles du comportment migratoire des colonies de fourmis (Tapinoma erraticum).- C.R. Ac. Sci. Paris, Ser. D 290: 523–526.

    Google Scholar 

  • Mikulecky, D.C. (1979). A network thermodynamic two-port element to represent the coupled flow of salt and current: Improved alternative for the equivalent circuit.- Biophys. J. 25: 323–339.

    Google Scholar 

  • Moorbath, S. (1977). The oldest rocks and the growth of continents.- Sci. Am. 236: 92–104.

    Google Scholar 

  • Moran, P.A.P. (1964). On the nonexistence of adaptive topographies.- Ann. Human. Genet. 27: 283–393.

    Google Scholar 

  • Murphy, E.A. and Berger, K.R. (1987). The dynamics of angular homeostasis: I. General principles.- Am. J. Med. Genet. 26: 457–472.

    Google Scholar 

  • Nicolis, G., Erneux, T. and Herschkowitz-Kaufman, M. (1979). Pattern formation in reacting and diffusing systems.- Adv. Chem. Phys. 38: 263–315.

    Google Scholar 

  • Noy-Meir, I. (1975). Stability of grazing systems: An application of predator-prey graphs.- J. Ecol. 63: 459–483.

    Google Scholar 

  • Obraztsov, I.F., Avtandilov, G.G. and Volmir, A.S. (1983). The problem of sudden coronary death in the light of the mathematical theory of catastrophes. (In Russian.).- Dokl. Akad. Nauk SSSR 268: 1338–1341.

    Google Scholar 

  • Pearson, M. and Elsdale, T. (1979). Somitogenesis in amphibian embryos: I. Experimental evidence for an interaction between two temporal factor; in the specification of somite pattern.- J. Embryol. Exp. Morph. 51: 27–50.

    Google Scholar 

  • Pearson, M. and McLaren, D.I. (1977). A criticism of catastrophe modelling in the differentiative process of amphibian development.- J. Theor. Biol. 69: 721–734.

    Google Scholar 

  • Poston, T. (1978a). The elements of catastrophe theory, or the honing of Occam's razor. In: K. Cooke and C. Renfrew, eds., Transformations: Mathematical Approaches to Culture Change.- New York, Academic Press.

    Google Scholar 

  • Poston, T. (1978b). On deducing the presence of catastrophes.- Math. Sci. Hum. 64: 71–99.

    Google Scholar 

  • Poston, T. and Stewart, I. (1978). Catastrophe Theory and its Applications.- London, Pitman.

    Google Scholar 

  • Rabinovich, J.E. (1981). Modelos y catastrofes: Enlace entre la teoria ecologia y el manejo de los recursos naturales renovables.- Interciencia 6: 12–21.

    Google Scholar 

  • Rau, W. (1983). Zur Formursache des Magengeschwürs.- Langenbecks Arch. Chir. 360: 43–57.

    Google Scholar 

  • Recknagel, F. (1985). Analysis of structural stability of aquatic ecosystems as an aid for ecosystem control.- Ecol. Model. 27: 221–234.

    Google Scholar 

  • Rose, M.R. and Harmsen, R. (1981). Ecological outbreak dynamics and the cusp catastrophe.- Acta Biotheoret. 30: 229–253.

    Google Scholar 

  • Rosen, R. (1981). Pattern generation in networks.- Prog. Theor. Biol. 6: 161–209.

    Google Scholar 

  • Saunders, P.T. (1980). An Introduction to Catastrophe Theory.— Cambridge University Press.

  • Saunders, P.T. and Ho, M.W. (1981). On the increase in complexity in evolution. II. The relativity of complexity and the principle of minimum increase.- J. Theor. Biol. 90: 515–530.

    Google Scholar 

  • Saunders, P.T. and Ho, M.W. (1985). Primary and secondary waves in prepattern formation.- J. Theor. Biol. 114: 491–504.

    Google Scholar 

  • Saxon, E.C. and Dudzinski, M.L. (1984). Biological survey and reserve design by landsat mapped ecoclines — a catastrophe theory approach.- Austral. J. Ecol. 9: 117–123.

    Google Scholar 

  • Schiffman, Y. (1980). Bifurcation in the privileged two-dimensional reaction-diffusion system as the ligand-induced redistribution, and biochemical control as its functional significance.- Prog. Biophys. Molec. Biol. 36: 87–130.

    Google Scholar 

  • Schiffman, Y. (1981). Potentials in chemical systems far from thermodynamic equilibrium: The reduction of reaction-diffusion systems to catastrophe theory. Prog. Theor. Biol. 6: 1–21.

    Google Scholar 

  • Seif, F.J. (1979). Cusp bifurcation in pituitary thyrotropin secretion. In: W. Guttinger and H. Eikemeier, eds., Structural Stability in Physics.- Berlin, Springer, 275–288.

    Google Scholar 

  • Shirane, K. and Tokimoto, T. (1988). Network formation in negatively charged membranes by two divalent cations and the [cusp?] catastrophe.- J. Theor. Biol. 130: 223–227.

    Google Scholar 

  • Shugart, H.H., Emanuel, W.R., West, D.C. and DeAngelis, D.L. (1980). Environmental gradients in a simulation model of a beech-yellow-poplar stand.- Math. Biosci. 50: 163–170.

    Google Scholar 

  • Smale, S. (1978). Review of E.C. Zeeman's Catastrophe Theory: Selected Papers 1972–1977.- Bull. Amer. math. Soc. 84: 1360–1368. Reprinted in S. Smale, The Mathematics of Time. (New York, Springer, 1980), 128–136.

    Google Scholar 

  • Stewart, I.N. and Peregoy, P.L. (1983). Catastrophe theory modeling in psychology. Psych. Bull. 94: 336–362.

    Google Scholar 

  • Stewart, I. and Woodcock, A.E.R. (1981). On Zeeman's equations for the nerve impulse.- Bull. Math. Biol. 43: 279–325.

    Google Scholar 

  • Sussman, H.J. (1975). Catastrophe theory.- Synthese 31: 229–270.

    Google Scholar 

  • Sussman, H.J. and Zahler, R.S. (1978). Catastrophe theory as applied to the social and biological sciences: A critique.- Synthese 37: 117–216.

    Google Scholar 

  • Tanyi, G.E. (1982a). Energy and biological evolution — I. The equilibrium states of biochemical Processes.- Bull. Math. Biol. 44: 501–535.

    Google Scholar 

  • Tanyi, G.E. (1982b). Energy and biological evolution — II. The mathematical structure of equilibrium states.- Bull. Math. Biol. 44: 537–547.

    Google Scholar 

  • Tanyi, G.E. (1982c). Energy and biological evolution — III. Theoretical ecology and macromolecular self-organization.- Bull. Math. Biol. 44: 549–555.

    Google Scholar 

  • Thom, R. (1972a). Structuralism and biology. In: C.H. Waddington, ed., Towards a Theoretical Biology: 4. Essays.— Edinburgh University Press, 68–82.

  • Thom, R. (1972b). Stabilité structurelle et morphogénèse, Reading, MA: Benjamin Trans. E.H. Fowler, 1975 as Structural Stability and Morphogenesis.- Reading, MA: Benjamin.

    Google Scholar 

  • Thom, R. (1975). Answer to Christopher Zeeman's reply. In: A. Manninged., Dynamical Systems Warwick 1974- Berlin, Springer. Reprinted in Zeeman (1976).

    Google Scholar 

  • Thom, R. (1977a). The two-fold way of catastrophe theory. In: A. Dold and B. Eckmann, eds., Structural Stability, the Theory of Catastrophes and Applications in the Sciences.- Berlin, Springer, 235–252.

    Google Scholar 

  • Thom, R. (1977b). Structural stability, catastrophe theory and applied mathematics. SIAM Rev. 19: 189–201.

    Google Scholar 

  • Thom, R. (1979). Modelisation et scientificité. In: P. Delatre and M. Thellier, eds., Elaboration et Justification des Modèles: Applications en Biologie.- Paris, Maloine.

    Google Scholar 

  • Thomas, B. and Pohley, H.-J. (1982). On the global representation of dynamical characteristics in ESS-models.- BioSystems 15: 141–153.

    Google Scholar 

  • Tokimoto, T. and Shirane, K. (1988). A self-organized chemical model and reaction cascade.- J. Theor. Biol. 130: 67–72.

    Google Scholar 

  • Varela, F.J., Rowley, J. and Moran, D.T. (1977). The control of ciliary movements: an application of the cusp catastrophe.- J. Theor. Biol. 65: 531–553.

    Google Scholar 

  • Venieratos, D. (1981). Models on prebiotic polymer competition: A deterministic approach.- Bull. Math. Biol. 43: 213–232.

    Google Scholar 

  • Woodcock, A.E.R. (1979). Catastrophe theory and cellular determination, transdetermination and differentiation.- Bull. Math. Biol. 41: 101–117.

    Google Scholar 

  • Woodcock, A.E.R. and Davis, M. (1978). Catastrophe Theory.- New York, Dutton.

    Google Scholar 

  • Zeeman, E.C. (1972a). Differential equations for the heartbeat and nerve impulse. In: C.H. Waddington, ed., Towards a Theoretical Biology: 4. Essays.— Edinburgh University Press, 8–67; Reprinted in Zeeman (1977).

  • Zeeman, E.C. (1972b) A catastrophe machine.- Ibid, 276–282. Reprinted in Zeeman (1977).

  • Zeeman, E.C. (1974). Primary and secondary waves in developmental biology.- Lect. Math. Life Sci. 7: 69–161. Reprinted in Zeeman (1977).

    Google Scholar 

  • Zeeman, E.C. (1976). Catastrophe theory.- Sci. Am. 234(4): 65–83.

    Google Scholar 

  • Zeeman, E.C. (1977). Catastrophe Theory: Selected Papers, 1972–1977.- London, Addison-Wesley.

    Google Scholar 

  • Zeeman, E.C. (1978). A catastrophe theory of Anorexia Nervosa In D.A. Booth, ed., Hunger Models.- New York, Academic Press.

    Google Scholar 

  • Zeeman, E.C. (1980). Population dynamics from game theory. In: Z. Nitecki and C. Robinson, eds., Global Theory of Dynamical Systems (Proceedings, Northwestern University, 1979). Lecture Notes in Mathematics 819.- Berlin, Springer, 471–497.

    Google Scholar 

  • Zeeman, E.C. (1981). Dynamics of the evolution of animal conflicts.- J. Theor. Biol. 89: 249–270.

    Google Scholar 

  • Zeeman, E.C. (1982). Bifurcation and catastrophe theory.- Contemp. Math. 9: 207–272.

    Google Scholar 

  • Zeeman, E.C., Hall, C.S., Harrison, P.J., Marriage, G.H. and Shapland, P.H. (1976). A model for institutional disturbances.- Brit. J. Math. Stat. Psychol. 29: 66–80. Reprinted in Zeeman (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deakin, M.A. Catastrophe modelling in the biological sciences. Acta Biotheor 38, 3–22 (1990). https://doi.org/10.1007/BF00047270

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047270

Keywords

Navigation