Skip to main content
Log in

Linear recurring sequences over modules

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

The aim of this paper is to extend some fundamental and applied results of the theory of linear recurring sequences over fields to the case of polylinear recurring sequences over rings and modules. Quasi-Frobenius modules and Galois rings play a very special role in this project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosimov, A. S.: On distribution of frequencies of multigrams in linear recurring sequences over residue rings,Uspekhi Mat. Nauk 48(5) (1993), 153–154 (Russian Math. Surveys).

    Google Scholar 

  2. Atiyah, M. F. and McDonald, I. G.:Introduction to Commutative Algebra, Addison-Wesley, Mass., 1969.

    Google Scholar 

  3. Azumaya, G.: A duality theory for injective modules (Theory of quasi-Frobenius modules),Amer. J. Math. 81 (1959), 249–278.

    Google Scholar 

  4. Berlekamp, E. R.:Algebraic Coding Theory, McGraw-Hill, New York, 1968.

    Google Scholar 

  5. Birkhoff, G. and Bartee, T. C.:Modern Applied Algebra, McGraw-Hill, New York, 1970.

    Google Scholar 

  6. Bollman, D.: Some periodicity properties of transformations on vector space over residue class rings,J. Soc. Industr. Appl. 13(3) (1965), 902–912.

    Google Scholar 

  7. Bollman, D.: Some periodicity properties of modules over the ring of polynomials with coefficients in a residue class ring,SIAM J. Appl. Math. 14 (1966), 237–241.

    Google Scholar 

  8. Borevich, Z. I. and Shafarevich, I. R.:Theory of Numbers, 3rd edn, Moscow, 1985.

  9. Brenner, J. L.: Linear recurrence relations,Amer. Math. Monthly 61 (1954), 171–173.

    Google Scholar 

  10. Carmichael, R. D.: On sequences of integers defined by recurrence relations,Quart. J. Pure Appl. Math. 48 (1920), 343–372.

    Google Scholar 

  11. Cerlienco, L. and Piras, F.: On the continuous dual of a polynomial bialgebra,Comm. Algebra 19(10) (1991), 2707–2727.

    Google Scholar 

  12. Chebyshev, P. L.:Theory of Probabilities, Lectures 1879–1880, Moscow, Leningrad, 1936, pp. 139–147.

  13. Chebyshev, P. L.:Congruence Theory, Complete Words, Vol. 1, Acad. Sci. of USSR, Moscow, Leningrad, 1944, pp. 10–172.

    Google Scholar 

  14. Dade, E. C., Robinson, D. W., Taussky, O., and Ward, M.: Divisors of recurrent sequences,J. reine angewandte Math. 214/215 (1964), 180–183.

    Google Scholar 

  15. Dai, Z. and Gollman, D.:Lower Bounds for the Linear Complexity of Sequences over Residue Rings, Lecture Notes in Comput. Sci. 473, Springer-Verlag, New York, 1991.

    Google Scholar 

  16. De, Carli, D. J.: A generalized Fibonacci seguence over an arbitrary ring,Fibonacci Quart. 8 (1970), 182–184, 198.

    Google Scholar 

  17. De, Carli, D. J.: Periodicity over the ring of matrices,Fibonacci Quart. 11(5) (1973), 466–468.

    Google Scholar 

  18. Curtes, Ch. W. and Reiner, I.:Representation Theory of Finite Groups and Associative Algebras, Wiley, New York, London, 1962.

    Google Scholar 

  19. Dickson, L. E.:History of the Theory of Numbers, Vol. 1, Carnegie Institute, Washington, D.C., 1919.

    Google Scholar 

  20. Dornhoff, L. L. and Hohn, F. E.:Applied Modern Algebra, Macmillan, New York, 1978.

    Google Scholar 

  21. Dubois, D.: Modules of sequences of elements of a ring,J. Lond. Math. Soc. 41(1) (1966), 177–180.

    Google Scholar 

  22. Duparc, H. J. A.: Periodicity properties of recurring sequences, I, II,Indag. Math. 16 (1954), 331–342, 473–485.

    Google Scholar 

  23. Eichenauer-Herrman, J., Grothe, H., and Lehn, J.: On the period length of pseudorandom vector-sequences generated by matrix generators,Math. Comput. V. S. 2(185) (1989), 145–148.

    Google Scholar 

  24. Elizarov, V. P.: Systems of linear equations over commutative rings,Uspekhi Mat. Nauk 48(2) (1993), 181–182 (Russian Math. Surveys).

    Google Scholar 

  25. Elizarov, V. P.: General Solution of systems of linear homogeneous equations over commutative ring,Uspekhi Mat. Nauk 49(1) (1994), 141–142 (Russian Math. Surveys).

    Google Scholar 

  26. Engstrom, H. T.: Periodicity in sequences defined by linear recurrence relations,Proc. Nat. Acad. Sci. USA 16 (1930), 663–665.

    Google Scholar 

  27. Engstrom, H. T.: On sequences defined by linear recurrence relations,Trans. Amer. Math. Soc. 33 (1931), 210–218.

    Google Scholar 

  28. Euler, L.: Introduction to calculus of infinitesimal variables (1748),Opera Omnia, Vol. 8 (1922), Vol. 9 (1945).

  29. Faith, C.:Algebra. Algebra II. Ring Theory, Springer-Verlag, New York, 1976.

    Google Scholar 

  30. Gustavson, F. G.: Analysis of the Berlekamp-Massey linear feedback shift register synthesis algorithm,IBM J. Res. Develop. 20 (1976), 204–212.

    Google Scholar 

  31. Gill, A.:Linear Sequential Circuits, McGraw-Hill, New York, 1966.

    Google Scholar 

  32. Hall, M.: An isomorphism between linear recurring sequences and algebraic rings,Trans. Amer. Math. Soc. 44 (1938), 196–218.

    Google Scholar 

  33. Ikai, T., Kosako, H., and Kojima, Y.: Subsequences in linear recurring sequences,Electronics Commun. Japan 53(12) (1970), 159–166.

    Google Scholar 

  34. Imamura, K. and Yoshida, W.: A simple derivation of Berlekamp-Massey algorithm and some applications,IEEE Trans. Inform. Theor. IT-33(1) Jan. 1987.

  35. Jansson, B.:Random Number Generators, Almqvist and Wiksell, Stockholm, 1966.

    Google Scholar 

  36. Kasch, F.:Moduln und Ringe, B. G. Teubner, Stuttgart, 1977.

    Google Scholar 

  37. Klove, Torleiv: Periodicity of recurring sequences in rings,Math. Scand. 32 (1973), 165–168.

    Google Scholar 

  38. Knuth, D. E.:The Art of Computer Programming, Vol. 1. Fundamental Algorithms, Addison-Wesley, New York, 1968.

    Google Scholar 

  39. Kronecker, L.: Forlesungen über Zahlentheorie, 1, Teubner, Leipzig, 1901.

    Google Scholar 

  40. Kurakin, V. L.: Structure of Hopf algebras of linear recurring sequences,Uspekhi Mat. Nauk 48(5) (1993), 177–178 (Russian Math. Surveys).

    Google Scholar 

  41. Kurakin, V. L.: Representations over a field of a linear recurrence of maximal period over a residue ring,Uspekhi Mat. Nauk 49(2) (1994), 157–158 (Russian Math. Surveys).

    Google Scholar 

  42. Kurakin, V. L.: Representations over rhe ringsZ p n of a linear recurring sequences of maximal period over the field GF(p),Discrete Mat. USSR 4(4) (1992), 96–116 (Discrete Math. Appl.).

    Google Scholar 

  43. Kurakin, V. L.: Representations of linear recurring sequences and regular prime numbers,Uspekhi Mat. Nauk 47(6) (1992), 215–216 (Russian Math. Surveys).

    Google Scholar 

  44. Kurakin, V. L.: Convolution of linear recurring sequences,Uspekhi Mat. Nauk 48(4) (1993), 235–238 (Russian Math. Surveys).

    Google Scholar 

  45. Kurakin, V. L.: Analytical structure of linear recurring sequences,Fundamentalnaja i Prikladnaja Matematika (in Russian)1(2) (1995), to appear.

  46. Kurakin, V. L.: The first coordinate sequence of a linear recurring sequence of maximal period over Galois ring,Discrete Mat. Russia 6(12) (1994), 88–100 (Discrete Math. Appl.).

    Google Scholar 

  47. Kuzmin, A. S.:Polynomials of Maximal Period over Residue Rings, 3rd International Conference in Algebra, Krasnojarsk, 1993.

  48. Kuzmin, A. S.: The distribution of elements on cycles of linear recurring sequences over residue rings,Uspekhi Mat. Nauk 47(5) (1992), 213–214 (Russian Math. Surveys).

    Google Scholar 

  49. Kuzmin, A. S.: Lower bounds of ranks for coordinate sequences over residue rings,Uspekhi Mat. Nauk 48(3) (1993), 193–194 (Russian Math. Surveys).

    Google Scholar 

  50. Kuzmin, A. S. and Nechaev, A. A.: Distribution of elements in linear recurrences of maximal period over ℤp 2,Proc. IV Internat. Workshop, Algebra and Combinator. Coding Theory, Novgorod, 1994, pp. 132–136.

  51. Kuzmin, A. S. and Nechaev, A. A.: Linear recurrent sequences over Galois rings,Uspekhi Mat. Nauk 48(1) (1993), 167–168 (Russian Math. Surveys).

    Google Scholar 

  52. Kuzmin, A. S. and Nechaev, A. A.: A construction of noise stable codes using linear recurrents over Galois rings,Uspekhi Mat. Nauk 47(5) (287), (1992), 183–184 (Russian Math. Surveys).

    Google Scholar 

  53. Kuzmin, A. S. and Nechaev A. A.: Linear recurrents over Galois rings,Proc. 2nd Internat. Conf. on Algebra, Barnaul, 1991.

  54. Lagrange, J.-L.: Sur l' integration d' une éqution differentielle a différences finies, qui contient la théorie des suites récurrentes,Misc. Taurinensia 1 (1759); Oeuvres, vol. 1, 93–96, Gauthier-Villars, Paris, 1867.

    Google Scholar 

  55. Lagrange, J.-L.: Recherches sur les suites récurrentes dont les termes varient de plusieurs manières différentes, ou sur l'integration des équations linéaires aur différences finies et partielles; et sur l'usage de ces équations dans la théorie des hasards,Nov. Mémoires Acad., Roy. Berlin 1775, 183–272; Oeuvres, vol. 4, 151–251, Gauthier-Villars, Paris, 1869.

    Google Scholar 

  56. Laksov, D.: Linear recurring sequences over finite fields,Math. Scand. 16 (1965), 181–196.

    Google Scholar 

  57. Lidl, R. and Niederreiter, H.:Introduction to Finite Fields and Their Applications, Cambridge Univ. Press. 1986.

  58. Lidl, R. and Niederreiter, H.:Finite Fields, Addison-Wesley, London, 1983.

    Google Scholar 

  59. Lucas, E.: Theorie des fonctions numeriques simplement periodiques,Amer. J. Math. 1 (1878), 184–240, 289–321.

    Google Scholar 

  60. Magidin, M. and Gill, A.: Singular shift register over residue class ring,Math. Syst. Theory 9(4) (1976), 345–358.

    Google Scholar 

  61. Markov, A. A.:Finite Difference Calculates, 2 edn, Odessa, 1910, pp. 209–239.

  62. Massey, J. L.: Shift-register synthesis and BCH decoding,IEEE Trans. Inform. Theory 15 (1969), 122–127.

    Google Scholar 

  63. McDonald, B. R.:Finite Rings with Identity, McGraw-Hill, New York, 1974.

    Google Scholar 

  64. McEliece, R. J.:Finite Fields for Computer Scientists and Engineers, Kluwer Acad. Publ., Dordrecht, 1987.

    Google Scholar 

  65. McWilliams, F. J. and Sloane, N. J. A.: Pseudo-random sequences and arrays,Proc. IEEE 64(11) (1976), 1715–1729.

    Google Scholar 

  66. Mendelsohn, N. S.: Congruence relationship for integral recurrences,Canad. Math. Bull. 5 (1962), 281–284.

    Google Scholar 

  67. Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition,Sci. Rpts Toky Kyoika Daigaku 6 (1958), 83–142.

    Google Scholar 

  68. Nagata, M.:Local Rings, Int. Publ., New York, 1962.

    Google Scholar 

  69. Nathanson, M. B.: Difference operators and periodic sequences over finite modules,Acta Math. Acad. Sci. Hungar. 28 (1976), 219–224.

    Google Scholar 

  70. Nechaev, A. A.: Finite principal ideals rings,Mat. Sb. 91(3) (1973), 350–366 (English translation:Math. USSR Sb. 20(3) (1974), 364–382).

    Google Scholar 

  71. Nechaev, A. A.: Criteria of completeness of system of functions over finite rings and quasi-Frobenius rings,Mat. Sb. 23(3) (1982), 175–187 (Math. USSR Sb.).

    Google Scholar 

  72. Nechaev, A. A.: Trace-function in Galois rings and noise stable codes, inProc. 5th All-Union Symp. of Theory of Ring Algebra and Modules, Novosibirsk, 1982, p. 97.

  73. Nechaev, A. A.: Similarity of matrices over local commutative Artinian rings,Trudy Sem. Petrovsk. 9 (1983), 81–101 (J. Soviet Math.).

    Google Scholar 

  74. Nechaev, A. A.: Kerdook code in a cyclic form,Discrete Math. Appl. 1(4) (1991), 365–384.

    Google Scholar 

  75. Nechaev, A. A.: Linear recurring sequences over commutative rings,Discrete Math. Appl. 2(6) (1992), 659–683.

    Google Scholar 

  76. Nechaev, A. A.: Linear recurring sequences and quasi-Frobenius modules, inProc. International School in Algebra and Analysis, Baikal, 1992.

  77. Nechaev, A. A.: The cyclic types of linear substitutions over finite commutative rings,Mat. Sb. 184(3) 21–56 (Math. USSR Sb.).

  78. Nechaev, A. A.: Linear recurring sequences over quasi-Frobenius modules,Uspekhi Mat. Nauk 48(3) (1993), 197–198 (Russian Math. Surveys).

    Google Scholar 

  79. Nechaev, V. I.: Groups of nonsingular matrices over finite fields and recurring sequences,Dokl. Akad. Nauk. SSSR 152(2) (1963), 275–277 (Soviet Math. Dokl.).

    Google Scholar 

  80. Nechaev, V. I.: Linear recurring congruences with periodic coefficients,Mat. Zametki 3(6) (1968), 625–632 (Math. Notes).

    Google Scholar 

  81. Nechaev, V. I.: Recurring sequences,Uchen. Zap. Mosk. Ped. Inst. 375 (1971), 103–123 (in Russian).

    Google Scholar 

  82. Nechaev, V. I.: Linear congruences on power of a prime ideal and linear recurring sequences,Uchen. Zap. Mosk. Ped. Inst. 375 (1971), 124–135 (in Russian).

    Google Scholar 

  83. Nechaev, V. I. and Polosuev, A. M.: On distribution of non-residues and primitive roots in a sequence satisfying a finite difference equation with polynominal coefficients,Moscow Univ. Math. Publ., Vol. 1,6 (1964), 75–84.

    Google Scholar 

  84. Nechaev, V. I. and Stepanova, L. L.: Distribution of non-residues and primitive roofs in recurring sequences over algebraic number field,Uspekhi Mat. Nauk 20(3) (1965), 197–203 (Russian Math. Surveys).

    Google Scholar 

  85. Niederreiter, H.: On the cycle structure of linear recurring sequences,Math. Scand. 38 (1976), 53–77.

    Google Scholar 

  86. Niederreiter, H.: A simple and general approach to the decimation of feedback shift-register sequence,Probl. Control Informat. Theory 17(3) (1988), 327–331.

    Google Scholar 

  87. Niederreiter, H.: Some new cryptosystems based on feedback register sequence,Math. J. Okayama Univ. 30 (1988), 121–149.

    Google Scholar 

  88. Nomura, T. and Fukuda, A.: Linear recurring planes and two-dimensional cyclic codes,Electronics Commun. Japan 54(3) (1971), 23–30.

    Google Scholar 

  89. Nomura, T., Miyakawa, H., Imai, H. and Fukuda, A.: A method of construction and some properties of planes having maximum area matrix,Electronics Commun. Japan 54(5) (1971), 18–25.

    Google Scholar 

  90. Nomura, T., Miyakawa, H., Imai, H. and Fukuda, A.: Some properities of the plane and its extension to three-dimensional space,Electronics Commun. Japan 54(8) (1971), 27–34.

    Google Scholar 

  91. Nomura, T., Miyakawa, H., Imai, H. and Fukuda, A.: A theory of two-dimensional linear recurring arrays,IEEE Trans. Inform. Theory IT- 18 (1972), 775–785.

    Google Scholar 

  92. Robinson, D. W.: A note on linear recurrent sequences modulom,Amer. Math. Monthly 73 (1966), 619–621.

    Google Scholar 

  93. Robinson, D. W.: The rank and period of a linear recurrent sequence over a ring,Fibonacci Quart. 14 (1976), 210–214.

    Google Scholar 

  94. Sakata, S.: Doubly linear recurring arrays andM-arrays,Trans. Inst. Electron. Comm. Eng. A 60(10) (1977), 918–925.

    Google Scholar 

  95. Sakata, S.: General theory of doubly periodic arrays over an arbitrary finite field and its applications,IEEE Trans. Inform. Theory IT- 24 (1978), 719–730.

    Google Scholar 

  96. Sakata, S.: On determining the independent point set for doubly periodic arrays and encoding two-dimensional cyclic codes and their duals,IEEE Trans. Inform. Theory IT- 27 (1981), 556–565.

    Google Scholar 

  97. Sakata, S.: Finding a minimal sef of the recurring relations capable of generating a given finite two-dimensional array,J. Symbolic Comput. 34(3) (1982), 321–337.

    Google Scholar 

  98. Sakata, S.:Synthesis of Two-Dimensional Linear Feedback Shift-Registers and Groebner Basis, Lecture Notes in Comput. Sci. 356, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  99. Shiue, J. S. and Sheu, T. L.: On the periodicity of linear recurrence of second order in commutative rings,Tamkang J. Math. 4 (1973), 105–107.

    Google Scholar 

  100. Sidelnikov, V. M.: Bounds for number of symbols on a segment of a recurring sequence over a finite field,Discrete Mat.,3(2) (1991), 87–95 (Discrete Math. Appl.).

    Google Scholar 

  101. Sidelnikov, V. M.: Distribution of non residues and primitive roots in recurring sequences,Mat. Zametki 24(5) (1987), 605–615 (Math. Notes).

    Google Scholar 

  102. Suprunenko, D. A.:Matrix Groups, Nauka, Moscow, 1972.

    Google Scholar 

  103. Uzkow, A. I.: Zur ideal theorie der Kommtativen Ring. I,Mat. Sb. 5(3) (1939), 513–520 (Math. USSR Sb.).

    Google Scholar 

  104. Uzkow, A. I.: An abstract foundation of Brandt's theory of Ideals,Mat. Sb. 6(2) (1939), 253–291 (Math. USSR Sb.).

    Google Scholar 

  105. Uzkow, A. I.: One algebraic lemma and normalizing E. Neother theorem,Mat. Sb. 22(2) (1948), 349–350 (Math. USSR Sb.).

    Google Scholar 

  106. Uzkow, A. I.: On cyclic direct decompsibility of modules over commutative rings,Mat. Sb. 62(4) (1963), 468–475 (Math. USSR Sb.).

    Google Scholar 

  107. Vince, A.: Period of a linear recurrence,Acta Arith. 39 (1981), 303–311.

    Google Scholar 

  108. Ward, M.: The arithmetical theory of linear recurring series,Trans. Amer. Math. Soc. 35 (1933), 600–628.

    Google Scholar 

  109. Ward, M.: Arithmetical properties of sequences in rings,Ann. of Math. 39(2) (1938), 210–219.

    Google Scholar 

  110. Webb, W. A. and Long, C. T.: Distribution modulo p of the general linear second order recurrence,Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58(8) (1975), 92–100.

    Google Scholar 

  111. Wisbauer, R.: Grundlagen der Modul- und Ringtheorie,Verl. Reinhard Fischer, Munich, 1988.

  112. Zierler, N.: Linear recurring sequences,J. Soc. Indust. Appl. Math. 7 (1959), 31–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhalev, A.V., Nechaev, A.A. Linear recurring sequences over modules. Acta Appl Math 42, 161–202 (1996). https://doi.org/10.1007/BF00047168

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047168

Mathematics Subject Classifications (1991)

Key words

Navigation