Skip to main content
Log in

A Lie-theoretic setting for the classical interpolation theories

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

The three classical interpolation theories — Newton-Lagrange, Thiele and Pick-Nevanlinna — are developed within a common Lie-theoretic framework. They essentially involve a recursive process, each step geometrically providing an analytic map from a Riemann surface to a Grassmann manifold. The operation which passes from the (n−1)st to the nth involves the action of what the physicists call a group of gauge transformations. There is also a first-order difference operator which maps the set of solutions of the nth order interpolation to the (n−1)st: This difference operator is, in each case, covariant with respect to the action of the Lie groups involved. For Newton-Lagrange interpolation, this Lie group is the group of affine transformations of the complex plane; for Thiele interpolation the group SL(2, C) of projective transformations; and for Pick-Nevanlinna interpolation the subgroup SU(1, 1) of SL(2, C) which leaves invariant the disk in the complex plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, W.: The Classical Theory of Moments, Hafner, New York, 1965.

    Google Scholar 

  2. Ball, J. A. and Helton, J. W.: ‘Lie Groups over the Field of Rational Functions, Signed Spectral Factorization, Signed Interpolation, and Amplifier Design’, J. Operator Theory 8 (1982), 19–64.

    MATH  MathSciNet  Google Scholar 

  3. Ball, J. A. and Helton, J. W.: ‘A Buerling-Lax Theorem for the Lie Group U(m, n) Which Contains Most Classical Interpolation Theory’, J. Operator Theory 9 (1983), 107–142.

    MATH  MathSciNet  Google Scholar 

  4. Ball, J.: ‘Interpolation Problems of Pick-Nevanlinna and Loewner Types for Meromorphic Matrix Functions‘, Integral Equations and Operator Theory 6 (1983), 804–840.

    Article  MATH  MathSciNet  Google Scholar 

  5. Chang, B. and Pearson, J. B.Jr.: ‘Optimal Disturbance in Linear Multivariable Systems’, IEEE Trans. Auto. Contr. AC-29 (1984), 880–887.

    Article  MATH  MathSciNet  Google Scholar 

  6. Davis, P. J.: Interpolation and Approximation, Dover, New York, 1975.

    MATH  Google Scholar 

  7. Delsarte, P. H., Genin, Y., and Kamp, Y.: ‘The Nevanlinna-Pick Problem for Matrix-Valued Functions’, SIAM J. Appl. Math. 36 (1979), 47–61.

    Article  MATH  MathSciNet  Google Scholar 

  8. Francis, B. A., Helton, J. W., and Zames, G.: ‘H Optimal Feedback Controllers for Linear Multivariable Systems’, IEEE Trans. Auto. Contr. AC-29 (1984), 888–900.

    Article  MATH  MathSciNet  Google Scholar 

  9. Francis, B. and Zames, G.: ‘On H -Optimal Sensitivity Theory for SISO Feedback Systems’, IEEE Trans. Auto. Contr. AC-29 (1984), 9–16.

    Article  MATH  MathSciNet  Google Scholar 

  10. Garnett, J. B.: Bounded Analytic Functions, Academic Press, New York, 1981.

    MATH  Google Scholar 

  11. Helton, J. W.: ‘Orbit Structure of the Möbius Transformation Semigroup Action on H (Broadband Matching)’, in Advances in Math. Suppl. Studies, Vol. 3, Academic Press, New York, 1978, pp. 129–157.

    Google Scholar 

  12. Helton, J.: ‘Non-Euclidean Functional Analysis and Electronics’, Bull. AMS. 7 (1982), 1–64.

    MATH  MathSciNet  Google Scholar 

  13. Hermann, R. and Martin, C.: ‘Applications of Algebraic Geometry to Systems Theory: The McMillan Degree and Kronecker Indices as Topological and Holomorphic Invariants’, SIAM J. Control Opt. 16 (1978), 743–755.

    Article  MATH  MathSciNet  Google Scholar 

  14. Hermann, R.: Cartanian Geometry, Nonlinear Waves and Control Theory, Parts A and B, Interdisciplinary Mathematics, Vols. 20 & 21. Math. Sci. Press, Brookline, MA, 1980.

    Google Scholar 

  15. Hermann, R.: Topics in the Geometric Theory of Linear Systems, Interdisciplinary Mathematics, Vol. 22. Math. Sci. Press, Brookline, MA, 1984.

    MATH  Google Scholar 

  16. Khargonekar, P. and Tannenbaum, A.: ‘Non-Euclidean Metrics and the Robust Stabilization of Systems with Parameter Uncertainty’, Preprint, University of Florida, 1984.

  17. Kimura, H.: ‘Robust Stabilizability for a Class of Transfer Functions’, IEEE Trans. Aut. Contr. AC-29 (1984), 787–793.

    Article  Google Scholar 

  18. Milne-Thomson, C. M.: The Calculus of Finite Differences, Chelsea Pub. Co., New York, 1981.

    MATH  Google Scholar 

  19. Thiele, T. N.: Interpolations — Rechnung, Leipzig, 1909.

  20. Wall, H. S.: Analytic Theory of Continued Fractions, Chelsea Pub. Co., New York, 1973.

    MATH  Google Scholar 

  21. Zames, G. and Francis, B. A.: ‘Feedback, Minimax Sensitivity, and Optimal Robustness’, IEEE Trans. Auto. Contr. AC-28 (1983), 585–601.

    Article  MATH  MathSciNet  Google Scholar 

  22. Zames, G.: ‘Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximates Inverses’, IEEE Trans. Auto. Contr. AC-26, (1981), 301–320.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

National Research Council Senior Research Associate at the Ames Research Center (NASA)}.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermann, R. A Lie-theoretic setting for the classical interpolation theories. Acta Appl Math 6, 275–292 (1986). https://doi.org/10.1007/BF00047160

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047160

AMS (MOS) subject classifications (1980)

Key words

Navigation