Skip to main content
Log in

Classical and quantum Heisenberg groups, their representations and applications

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

This paper is a survey on classical Heisenberg groups and algebras, q-deformed Heisenberg algebras, q-oscillator algebras, their representations and applications. Describing them, we tried, for the reader's convenience, to explain where the q-deformed case is close to the classical one, and where there are principal differences. Different realizations of classical Heisenberg groups, their geometrical aspects, and their representations are given. Moreover, relations of Heisenberg groups to other linear groups are described. Intertwining operators for different (Schrödinger, Fock, compact) realizations of unitary irreducible representations of Heisenberg groups are given in explicit form. Classification of irreducible representations and representations of the q-oscillator algebra is derived for the cases when q is not a root of unity and when q is a root of unity. The Fock representation of the q-oscillator algebra is studied in detail. In particular, q-coherent states are described. Spectral properties of some operators of the Fock representations of q-oscillator algebras are given. Some of applications of Heisenberg groups and algebras, q-Heisenberg algebras and q-oscillator algebras are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahiezer, N. I. and Glazman, I. M.: The Theory of Linear Operators in Hilbert Space, Ungar, New York, 1961.

    Google Scholar 

  2. Arik, M. and Coon, D. D.: Operator algebra of dual resonance models, J. Math. Phys. 16 (1975), 1776–1779.

    Google Scholar 

  3. Arik, M. and Coon, D. D.: Hilbert spaces of analytical functions and generalized coherent states, J. Math. Phys. 17 (1976), 524–527.

    Google Scholar 

  4. Askey, R.: Continuous q-Hermite polynomials when q>1, in: D. Stanton (ed.), q-Series and Partitions, Springer, New York, 1989, pp. 151–158.

    Google Scholar 

  5. Askey, R. and Ismail, M.: A generalization of ultraspherical polynomials, in P. Erdös (ed.), Studies in Pure Mathematics, Birkhäuser, Basel, 1983, pp. 55–78.

    Google Scholar 

  6. Berezanskii, Ju. M.: Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence, R. I., 1968.

    Google Scholar 

  7. Biedenharn, L. C.: The quantum group SU q(2) and a q-analogue of the boson operators, J. Phys. A 22 (1989), L873-L878.

    Google Scholar 

  8. Boas, R. P. Jr.: Summation formulas and band-limited signals, Tohoku Math. J. 24 (1972), 121–125.

    Google Scholar 

  9. Burban, I. M.: Two-parameter deformation of the oscillator algebra, Phys. Lett. B 319 (1993), 485–489.

    Google Scholar 

  10. Burban, I. M. and Klimyk, A. U.: On spectral properties of q-oscillator operators, Lett. Math. Phys. 29 (1993), 13–18.

    Google Scholar 

  11. Burban, I. M. and Klimyk, A. U.: p, q-Differentiation, p, q-integration and p, q-hypergeometric functions related to quantum groups, Integral Transforms and Special Functions 2 (1994), 15–36.

    Google Scholar 

  12. Chakrabarti, R. and Jagannathan, R.: A (p, q)-oscillator realization of two-parameter quantum algebras, J. Phys. A 24 (1991), L711-L718.

    Google Scholar 

  13. Coon, D. D., Yu, S., and Baker, M. M.: Operator formulation of a dual multiparticle theory with nonlinear trajectories, Phys. Rev. D 5 (1972), 1429–1433.

    Google Scholar 

  14. Damaskinsky, E. V. and Kulish, P. P.: Deformed oscillators and their applications, Zap. Nauchn. Sem. LOMI 189 (1991), 37–74.

    Google Scholar 

  15. Damaskinsky, E. V. and Kulish, P. P.: q-Hermite polynomials and q-oscillators, Zap. Nauchn. Sem. LOMI 199 (1992), 82–90.

    Google Scholar 

  16. Dieudonné, J. A.: La géometrie des groupes classiques (Troisieme edition), Springer, Berlin, 1971.

    Google Scholar 

  17. Dunkl, C. F.: Boundary value problem for harmonic functions on the Heisenberg group, Canad. J. Math. 38 (1986), 478–512.

    Google Scholar 

  18. Feinsilver, P.: Commutators, anti-commutators and Eulerian calculus, Rocky Mountain J. Math. 12 (1982), 171–183.

    Google Scholar 

  19. Feinsilver, P.: Discrete analogues of the Heisenberg-Weyl algebra, Monatsh. Math. 104 (1987), 98–108.

    Google Scholar 

  20. Floreanini, R. and Vinet, L.: q-Orthogonal polynomials and q-oscillator quantum group, Lett. Math. Phys. 22 (1991), 45–54.

    Google Scholar 

  21. Floreanini, R. and Vinet, L.: Automorphisms of the q-oscillator algebra and basic orthogonal polynomials, Preprint UdeM-LPN-TH141, Montreal, 1993.

  22. Geller, G.: Fourier analysis on the Heisenberg group. I, J. Funct. Anal. 36 (1980), 205–254.

    Google Scholar 

  23. Geller, D. and Stein, E. M.: Singular convolution operators on the Heisenberg group, Bull. Amer. Math. Soc. 6 (1982), 99–103.

    Google Scholar 

  24. Greiner, P. C.: Spherical harmonics on the Heisenberg group, Canad. J. Math. 23 (1980), 383–396.

    Google Scholar 

  25. Greiner, P. C. and Koornwinder, T. H.: Variations on the Heisenberg spherical harmonics, Preprint ZW 186/83, Amsterdam, 1983.

  26. Gould, M. and Biedenharn, L. C.: The pattern calculus for tensor operators in quantum groups, J. Math. Phys. 33 (1992), 3613–3635.

    Google Scholar 

  27. Hayashi, T., Q-analogue of Clifford and Weyl algebras. Spinor and oscillator representations of quantum enveloping algebras, Comm. Math. Phys. 127 (1990), 129–144.

    Google Scholar 

  28. Hebecker, A., Schreckenberg, S., Schwenk, J., Weich, W. and Wess, J.: Representations of a q-deformed Heisenberg algebra, Preprint MPI-Ph/93-45, Munich, 1993.

  29. Howe, R.: On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc. 3 (1980), 821–843.

    Google Scholar 

  30. Kalnins, E. G., Manocha, H. L. and Miller, W. Jr.: Models of q-algebra representations: Tensor products of special unitary and oscillator algebras, J. Math. Phys. 33 (1992), 2865–2883.

    Google Scholar 

  31. Kalnins, E. G., Miller, W. Jr. and Mukherjee, S.: Models of q-algebra representations: Matrix elements of the q-oscillator algebra, J. Math. Phys. 34 (1993), 5333–5356.

    Google Scholar 

  32. Kirillov, A. A.: Elements of the Theory of Representations, Springer, Berlin, 1970.

    Google Scholar 

  33. Kulish, P. P.: Contraction of quantum algebras and q-oscillator, Teor. i Mat. Fiz. 86 (1991), 157–160.

    Google Scholar 

  34. Lion, G. and Vergne, M.: The Weil Representation, Maslov Index and Theta Series, Birkhäuser, Basel, 1980.

    Google Scholar 

  35. Macfarlane, A. J.: On q-analogues of the quantum harmonic oscillator and the quantum group SU(2), J. Phys. A 22 (1989), 4581–4586.

    Google Scholar 

  36. Miller, W.: Lie Theory and Special Functions, Academic Press, New York, 1968.

    Google Scholar 

  37. Ostrovsky, V. L. and Samoilenko, U. S.: Structure theorem for a pair of unbounded selfadjoint operators satisfying a quadratic relation, Adv. Soviet Math. 9 (1992), 131–149.

    Google Scholar 

  38. Ostrovsky, V. L. and Samoilenko, U. S.: On pair of selfadjoint operators, Seminar S. Lie 3(2) (1993), 185–218.

    Google Scholar 

  39. Pusz, W. and Woronowicz, S. L.: Twisted second quantization, Rep. Math. Phys. 27 (1989), 231–257.

    Google Scholar 

  40. Quesne, C.: Raising and lowering operators for u q (n), J. Phys. A 26 (1993), 357–372.

    Google Scholar 

  41. Quesne, C.: Two-parameter versus one-parameter quantum deformation of su(2), Phys. Lett. A 174 (1993), 19–24.

    Google Scholar 

  42. Ray, R. and Nelson C. A.: Preprint SUNY-BING 7/11/90, State University of New York, 1990.

  43. Rideau, G.: On the representations of quantum oscillator algebra, Lett. Math. Phys. 24 (1992), 147–153.

    Google Scholar 

  44. Schempp, W.: Radar ambiguity functions, the Heisenberg group, and holomorphic theta series, Proc. Amer. Math. Soc. 92 (1984), 103–110.

    Google Scholar 

  45. Schempp, W.: Harmonic Analysis on the Heisenberg Nilpotent Lie Group, Wiley, New York, 1986.

    Google Scholar 

  46. Schempp, W.: Wavelet interference, Fourier transform magnetic resonance imaging, and temporally encoded synchronized neural networks (to appear).

  47. Schmüdgen, K.: Unbounded Operator Algebras and Representation Theory, Birkhäuser, Basel, 1990.

    Google Scholar 

  48. Schmüdgen, K.: Operator representations of the real twisted commutation relations, J. Math. Phys. 35 (1994), 3211–3229.

    Google Scholar 

  49. Van Daele, A.: A quantum deformation of the Heisenberg group, Preprint, Leuven, 1989.

  50. Van der Jeugt, J.: The q-boson operator algebra and q-Hermite polynomials, Lett. Math. Phys. 24 (1992), 267–274.

    Google Scholar 

  51. Vilenkin, N. Ja. and Klimyk, A. U.: Representation of Lie Groups and Special Functions, Kluwer, Dordrecht, Vol. 1, 1992; Vol. 2, 1993.

    Google Scholar 

  52. Vilenkin, N. Ja. and Klimyk, A. U.: Representation of Lie Groups and Special Functions. Recent Advances, Kluwer, Dordrecht, 1995.

    Google Scholar 

  53. Weil, A.: Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143–211.

    Google Scholar 

  54. Wolf, K. B., Integral Transforms in Science and Engineering, Plenum Press, New York, 1979.

    Google Scholar 

  55. Zhedanov, A. S.: Nonlinear shifts of q-Bose operators and q-coherent states, J. Phys. A 24 (1991), L1129-L1132.

    Google Scholar 

  56. Zhedanov, A. S.: Q-rotations and other Q-transformations as unitary nonlinear automorphisms of quantum algebras, J. Math. Phys. 35 (1994), 3756–3764.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimyk, A.U., Schempp, W. Classical and quantum Heisenberg groups, their representations and applications. Acta Appl Math 45, 143–194 (1996). https://doi.org/10.1007/BF00047124

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047124

Mathematics Subject Classifications (1991)

Key words

Navigation