Advertisement

Vegetatio

, Volume 54, Issue 3, pp 153–165 | Cite as

Vegetation patterns related to environmental factors in a Negev Desert watershed

  • L. Olsvig-Whittaker
  • M. Shachak
  • A. Yair
Article

Abstract

Three strip transects, each ca 100 contiguous 0.5×1 m2 quadrats, were sampled during the spring bloom of March 1981 across four surface structural units of a Negev Desert research watershed at Sede Boqer, Israel. Presence of all vascular plants was recorded. Data were subjected to detrended correspondence analysis (DCA ordination), and resulting spatial patterns of species distribution and abundance were compared. Large-scale gradients of vegetation were related to differences in soil moisture availability among the four structural units. Where micro-scale vegetation patterns were important, these correlated with rock and crevice microtopography. Species richness was influenced by high numbers of therophytes on the dry upper slope of the watershed and their reduced importance on the lower three units. Relationships between vegetational patterns and known ecosystem properties of the watershed are discussed.

Key words

Desert Detrended correspondence analysis Ecosystem Microsites Negev Desert Ordination Pattern analysis Spatial heterogeneity Species diversity Vascular plants Watershed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, Y. & Braun, M., 1965. Type sections of Upper Cretaceous formations in the northern Negev. Geol. Surv., Stratigraphic Section 2A. Jerusalem.Google Scholar
  2. Danin, A., Orshan, G. & Zohary, M., 1975. The vegetation of the northern Negev and the Judean Desert of Israel. lsr. J. Bot. 24: 118–172.Google Scholar
  3. Ellner, S. & Shmida, A., 1982. Why are adaptations for long range seed dispersal rare in desert plants? Oecologia 51: 133–134.Google Scholar
  4. Evenari, M., Shanan, L. & Tadmor, N., 1971. The Negev: the challenge of a desert. Harvard University Press, Cambridge, Massachusetts. 343 pp.Google Scholar
  5. Friedman, J., Orshan, G. & Ziger-Cfir, Y., 1977. Suppression of annuals by Artemisia herba-alba in the Negev Desert of Israel. J. Ecol. 65: 413–426.CrossRefGoogle Scholar
  6. Gauch, H. G., 1982. Multivariate Analysis in Community Ecology. Cambridge Univ. Press, Cambridge. 298 pp.CrossRefGoogle Scholar
  7. Gauch, H. G. & Whittaker, R. H., 1972. Coenocline simulation. Ecology 53: 446–451.CrossRefGoogle Scholar
  8. Gauch, H. G., Whittaker, R. H. & Wentworth, T. R., 1977. A comparative study of reciprocal a veraging and other ordination techniques. J. Ecol. 65: 157–174.CrossRefGoogle Scholar
  9. Greig-Smith, P., 1964. Quantitative Plant Ecology, 2nd ed. Butterworths, London. 256 pp.Google Scholar
  10. Hill, M. O., 1973. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61: 237–249.CrossRefGoogle Scholar
  11. Hill, M. O., 1974. Correspondence analysis: a neglected multivariate method. J. Roy. Stat. Soc. Ser. C 23: 240–254.Google Scholar
  12. Hill, M. O., 1979. DECORANA — A FORTRAN program for detrended correspondence analysis and reciprocal averaging. Section of Ecology and Systematics, Cornell University, Ithaca, New York 14853.Google Scholar
  13. Hill, M. O. & Gauch, H. G., 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42: 47–58.CrossRefGoogle Scholar
  14. Kershaw, K. A., 1957. The use of cover and frequency in the detection of pattern in plant communities. Ecology 38: 291–299.CrossRefGoogle Scholar
  15. Loria, M. & Noy-Meir, I., 1979. Dynamics of some annual populations in a desert loess plain. Isr. J. Bot. 28: 211–225.Google Scholar
  16. Olsvig(-Whittaker), L., 1979. Pattern and diversity analysis of the irradiated oak-pine forest, Brookhaven, New York. Vegetatio 40: 67–78.Google Scholar
  17. Pielou, E. C., 1974. Population and Community Ecology: principles and methods. Gordon & Breach, New York. 424 pp.Google Scholar
  18. Pomeroy, L. R., 1974. Cyclings of Essential Elements. Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania. 373 pp.Google Scholar
  19. Shachak, M., 1983. Some aspects of the relationship between experimental scale and ecosystem properties. Submitted to Oecologia.Google Scholar
  20. Shmida, A. & Whittaker, R. H., 1981. Pattern and biological microsite effects in two shrub communities, southern California. Ecology 62: 234–251.CrossRefGoogle Scholar
  21. Whittaker, R. H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30: 279–338.CrossRefGoogle Scholar
  22. Whittaker, R. H., 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.CrossRefGoogle Scholar
  23. Whittaker, R. H., 1975. Communities and Ecosystems, 2nd ed. Macmillan, New York. 385 pp.Google Scholar
  24. Whittaker, R. H., 1977. Evolution of species diversity in land communities. Evol. Biol. 10: 1–67.Google Scholar
  25. Whittaker, R. H., Gilbert, L. E. & Connell, J. H., 1979. Analysis of two-phase pattern in a mesquite grassland, Texas. J. Ecol. 67: 935–952.CrossRefGoogle Scholar
  26. Whittaker, R. H. & Naveh, Z., 1979. Analysis of two phase patterns. In: Patil, G. P. & Rosenzweig, M. L. (eds.), Contemporary Quantitative Ecology and Related Ecometrics. pp. 157–165. Stat. Ecol. Ser. 12. International Cooperative Publishing House, Burtonsville, Maryland.Google Scholar
  27. Whittaker, R. H., Niering, W. A. & Crisp, M. D., 1979. Structure, pattern, and diversity of a mallee community in New South Wales. Vegetatio 39: 65–76.CrossRefGoogle Scholar
  28. Wilson, M. V. & Mohler, C. L., 1982. GRADBETA—A FORTRAN program for measuring compositional change along gradients. Section of Ecology and Systematics, Cornell University, Ithaca, New York 14853.Google Scholar
  29. Wilson, M. W. & Mohler, C. L., 1983. Measuring compositional change along gradients. Vegetatio (in press).Google Scholar
  30. Yaalon, D. H. & Dan, J., 1974. Accumulation of loess derived deposits in the semidesert and desert fringe areas of Israel. Zeitschr. für Geom. N. P. 20: 91–105.Google Scholar
  31. Yair, A. & Danin, A., 1980. Spatial variation in vegetation as related to the soil moisture regime over an arid limestone hillside, northern Negev, Israel. Oecologia 47: 83–88.CrossRefGoogle Scholar
  32. Yair, A. & de, Ploey, J., 1979. Field observations and laboratory experiments concerning the creep process of rock blocks in an arid environment. Catena 6: 245–258.CrossRefGoogle Scholar
  33. Yair, A. & Lavee, H., 1981. An investigation of source areas of sediment and sediment transport by overland flow along arid hillslopes. In: Proc. Florence Symp. Erosion and Sediment Transport Measurement, pp. 433–446. IAHS Publ. 133.Google Scholar
  34. Yair, A. & Shachak, M., 1982. A case study of energy, water, and soil flow chains in an arid ecosystem. Oecologia (in press).Google Scholar
  35. Yair, A., Sharon, D. & Lavee, H., 1978. An intrumented watershed for the study of partial area contribution of runoff in an arid area. Zeitschr. für Geom. Suppl. B 29: 71–82.Google Scholar
  36. Yair, A., Sharon, D. & Lavee, H., 1980. Trends in runoff and erosion processes over an arid limestone hillside, northern Negev, Israel. Hydrol. Sci. Bull. 25: 243–255.CrossRefGoogle Scholar
  37. Zohary, M., 1962. Plant Life of Palestine. Ronald Press, New York. 262 pp.Google Scholar

Copyright information

© Dr W. Junk Publishers 1983

Authors and Affiliations

  • L. Olsvig-Whittaker
    • 1
  • M. Shachak
    • 2
  • A. Yair
    • 3
  1. 1.Section of Ecology and SystematicsCornell UniversityIthacaUSA
  2. 2.Desert Research InstituteBen Gurion University of the NegevSede BoquerIsrael
  3. 3.Department of GeographyHebrew UniversityJerusalemIsrael

Personalised recommendations