Skip to main content
Log in

A mathematical flat integral realization and a large deviation result for the free Euclidean field

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

In this paper, we give a nonstandard construction of the free Euclidean field via S-white noise. This provides a flat integral realization of the free Euclidean field measure, which extends N. J. Cutland's flat integral representation of Wiener measure. Moreover, we show how a Cameron-Martin type formula for translations of the free field measure and a Schilder type large deviation principle for the scalar free field measure can be deduced from our nonstandard construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S.: Nonstandard analysis in mathematical physics, in: N. J. Cutland (ed.), Nonstandard Analysis and its Applications, LMS Student Text 10, Cambridge Univ. Press, 1988, pp. 182–220.

  2. Albeverio, S., Fenstad, J. E., Høegh-Krohn, R., and Lindstrøm, T.: Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, New York, 1986.

    Google Scholar 

  3. Albeverio, S. and Høegh-Krohn, R.: Martingale convergence and the exponential interaction in 347–1, in: L. Streit (ed.), Quantum Fields-Algebras, Processes, Springer-Verlag, Berlin, 1980, pp. 331–353.

    Google Scholar 

  4. Albeverio, S. and Wu, J. L.: Nonstandard flat integral representation of the free Euclidean field and a large deviation bound for the exponential interaction, in: N. Cutland, V. Neves, A. J. Franco de Oliveira and J. Sousa Pinto (eds), Developments in Nonstandard Mathematics (Proceedings of the CIMNS 94 Conference), Longman, Harlow.

  5. Anderson, R. M.: A nonstandard representation for Brownian motion and Itô integration, Israel J. Math. 25 (1976), 15–46.

    Google Scholar 

  6. Cutland, N. J.: Nonstandard measure theory and its applications, Bull. London Math. Soc. 15 (1983), 529–589.

    Google Scholar 

  7. Cutland, N. J.: Infinitesimals in action, J. London Math. Soc. 35 (1987), 202–216.

    Google Scholar 

  8. Cutland, N. J.: The Brownian bridge as a flat integral, Math. Proc. Cambridge Phil. Soc. 106 (1989), 343–354.

    Google Scholar 

  9. Cutland, N. J.: An action functional for Lévy Brownian motion, Acta Appl. Math. 18 (1990), 261–281.

    Google Scholar 

  10. Cutland, N. J.: On large deviations in Hilbert space, Proc. Edinburgh Math. Soc. 34 (1991), 487–495.

    Google Scholar 

  11. Cutland, N. J.: Nonstandard representation of Gaussian measures, in: T. Hida, H.-H. Kuo, J. Potthoff and L. Streit (eds), White Noise-Mathematics and Application, World Scientific, Singapore, 1990, pp. 73–92.

    Google Scholar 

  12. Deuschel, J. D. and Stroock, D. W.: Large Deviations, Academic Press, San Diego, 1989.

    Google Scholar 

  13. Gelfand, I. M. and Vilenkin, N. Ya.: Generalized Functions, Vol. 4. Applications of Harmonic Analysis, Academic Press, New York, 1964.

    Google Scholar 

  14. Glimm, J. and Jaffe, A.. Quantum Physics: A Functional Integral Point of View (2nd edn), Springer-Verlag, New York, 1987.

    Google Scholar 

  15. Guerra, F., Rosen, L., and Simon, B.: The 348–1 Euclidean quantum field theory as classical statistical mechanics, Ann. Math. 101 (1975), 111–259.

    Google Scholar 

  16. Guerra, F., Rosen, L., and Simon, B.: Boundary conditions for the 348–2 Euclidean field theory, Ann. Inst. Henri Poincaré A 25 (1976), 231–334.

    Google Scholar 

  17. Hida, T., Kuo, H.-H., Potthoff, J., and Streit, L.: White Noise: An Infinite Dimensional Calculus, Kluwer Acad. Publ., Dordrecht, 1993.

    Google Scholar 

  18. Itô, K.: Foundation of Stochastic Differential Equations in Infinite Dimensional Spaces, CBMS 47, SIAM, Philadelphia, 1984.

    Google Scholar 

  19. Jona-Lasinio, G. and Mitter, P. K.: Large deviation estimates in the stochastic quantization of 348–3, Comm. Math. Phys. 130 (1990), 111–121.

    Google Scholar 

  20. Lindstrøm, T.: Hyperfinite stochastic integration I, Math. Scand. 46 (1980), 265–292.

    Google Scholar 

  21. Lindstrøm, T.: An invitation to nonstandard analysis, in: N. J. Cutland (ed.), Nonstandard Analysis and its Applications, LMS Student Text 10, Cambridge Univ. Press, 1988, pp. 1–105.

  22. Mück, S.: Large deviations w.r.t. quasi-every starting point for symmetric right processes on general state spaces, Probab. Theory Related Fields 99 (1994), 527–548.

    Google Scholar 

  23. Nelson, E.: The free Markov field, J. Funct. Anal. 12 (1973), 211–227.

    Google Scholar 

  24. Reed, M. and Rosen, L.: Support properties of the free measure for Boson fields, Comm. Math. Phys. 36 (1974), 123–132.

    Google Scholar 

  25. Reed, M. and Simon, B.: Methods of Mathematical Physics I: Functional Analysis (revised and enlarged edition), Academic Press, New York, 1980; Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.

    Google Scholar 

  26. Simon, B.: The 348–4 Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, 1974.

    Google Scholar 

  27. Stoll, A.: A nonstandard construction of Lévy Brownian motion, Probab. Theory Related Fields 71 (1986), 321–334.

    Google Scholar 

  28. Stroock, D. W.: An Introduction to the Theory of Large Deviations, Springer-Verlag, New York, 1984.

    Google Scholar 

  29. Yan, J.-A.: Generalizations of Gross' and Minlos' theorems, in: J. Azéma, P. A. Meyer, and M. Yor (eds), Séminaire de Probabilités, XXII. Lect. Notes in Math. 1372, Springer-Verlag, Berlin, 1989, pp. 395–404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

SFB 237 Essen-Bochum-Düseldorf; BiBoS-Research Centre; CERFIM, Locarno, Switzerland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albeverio, S., Wu, JL. A mathematical flat integral realization and a large deviation result for the free Euclidean field. Acta Appl Math 45, 317–348 (1996). https://doi.org/10.1007/BF00047027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047027

Mathematics Subject Classifications (1991)

Key words

Navigation