Skip to main content
Log in

The problem of automation in animal development: confrontation of the concept of cell sociology with biochemical data

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The principles of automation in animal development, as previously inferred from the concept of Cell Sociology do not fit in well with the current concept of sequential gene derepression. A more adequate explanation for those principles has been found in the literature dealing with the biochemical aspects of differentiation. Since oocytes and embryonic cells contain a greater variety of mRNAs than differentiated cells, as well as many tissue-specific (luxury) substances, it is concluded that the diversification of tissues consists of a progressive selection of specific metabolic strategies, mediated by cell-to-cell contacts, from a broad range of pre-existing strategies. For each tissue, prior to its final determination, one luxury metabolic strategy is progressively intensified and becomes dominant. The others are either suppressed or maintained as latent metabolic strategies. The latter may on occasion become dominant again (transdifferentiation). These phenomena require a theory which considers gene regulation as the activation of otherwise repressed genes by specific activator RNAs. The high (apparently maximal) transcriptional activity on the lampbrush chromosomes may represent the synthesis of all the kinds of activator RNAs which are required for the reactivation of the genes during early development. A general conception is propounded of the automatism and programming of animal development, as inferred from the confrontation of these ideas with the concept of Cell Sociology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affara, N. and Daubas, P. (1979). Regulation of a group of abundant mRNA sequence during Friend differentiation. - Dev. Biol. 12, pp. 110–125.

    Google Scholar 

  • Anthony, D.D., Zeszstek, E. and Goldthwait, D.A. (1966). Initiation by the DNA dependant RNA polymerase. - Proc. Natl. Acad. Sci. U.S.A., 56, pp. 1026–1033.

    Google Scholar 

  • Bell, E. (1971). Information transfer between nucleus and cytoplasm during differentiation. In: D.D. Davies and M. Balls, ed., Symposia of the Society for experimental Biology, vol. 25: Control mechanisms of growth and differentiation. - Cambridge, University, Press.

    Google Scholar 

  • Brandhorst, B.P. (1976). Two-dimensional gel patterns of protein synthesis before and after fertilization of sea-urchin. - Developm. Biol., 52, pp. 310–317.

    Google Scholar 

  • Britten, R.J. and Davidson, E.H. (1969). Gene regulation for higher cells: A theory. - Science 165, pp. 349–357.

    Google Scholar 

  • Chandebois, R. (1976a). Morphogénétique des animaux pluricellulaires. - Paris, Maloine Ed., 461 pp.

    Google Scholar 

  • Chandebois, R. (1976b). Cell sociology: a way of reconsidering the current concepts of morphogenesis. - Acta biotheor., 25, pp. 71–102.

    Google Scholar 

  • Chandebois, R. (1977). Cell sociology and the problem of position effect: pattern formation, origin and role of gradients. - Acta biotheor., 26, pp. 203–238.

    Google Scholar 

  • Chandebois, R. (1980). Cell sociology and the problem of automation in the development of pluricellular animals. - Acta biotheor., 29, pp. 1–35.

    Google Scholar 

  • Church, R.B. and Mc Carthy, B.J. (1967). Ribonucleic acid synthesis in embryonic liver. II: The synthesis of RNA during embryonic liver development and its relationship to regenerating liver. - J. Mol. Biol., 23, p. 477.

    Google Scholar 

  • Clark, W.R. and Rutter, W.J. (1967). Levels of regulation during the ontogeny of insuling in the rat embryo. - Fed. Proc., 26, p. 603.

    Google Scholar 

  • Clayton, R.M. (1979). Regulatory factors for lens fibre formation in cell culture. I: Possible requirement for pre-existing levels of crystallin mRNA. - Ophtalmic Res., 11, pp. 324–328.

    Google Scholar 

  • Clayton, R.M., de Pomerai, D.I. and Pritchard, D.J. (1977). Experimental manipulation of alternative pathways of differentation in cultures of embryonic chick neural retina. - Developm. Growth and Diff., 19, pp. 319–328

    Google Scholar 

  • Clayton, R.M. Odeigah, P.G. de Pomerai, D.I., Pritchard, D.J., Thomson, I. and Truman, D.E.S. (1976). Experimental modifications of the quantitative pattern of crystallin synthesis in normal and hyperplastic lens epithelia. - In: Y. Courtois and F. Regnault ed., Biology of the lens epithelial cell in relation to development, ageing and cataract, pp. 123–136. Paris, INSERM.

    Google Scholar 

  • Clayton, R.M., Thomson, I. and de Pomerai, D.I. (1979). Relationship between crystallin mRNA expression in retina cells and their capacity to re-differentiate into lens cells. - Nature, 282, pp. 628–629.

    Google Scholar 

  • Clever, U. (1961). Genaktivitäten in den Reisenchromosomen von Chironomus tentans und ihre Beziehung zur Entwicklung. I: Genaktivierungen durch Ecdyson. - Chromosoma, 12, pp. 607–675.

    Google Scholar 

  • Denis, H. (1966). Activité des génes an cours du développement embryonnaire. Liège, Desoer.

    Google Scholar 

  • Deshpande, A.K., Jarkowlew, S.B., Arnold, H.H., Crawford, P.A. and Siddiqui, M.A. (1977). A novel RNA affecting embryonic gene functions in early chick blastoderm. - J. biol. Chemistry, 252, pp. 6521–6527.

    Google Scholar 

  • Deshpande, A.K. and Siddiqui, M.A.Q. (1977). A reexamination of heart muscle differentiation in the post-nodal piece of chick blastoderm mediated by exogenous RNA. - Develop. Biol., 58 pp. 230–247.

    Google Scholar 

  • Dym, H.P., Kennedy, D.S. and Heywood, S.M. (1979). Sub-cellular distribution of the, cytoplasmic heavy chain mRNA during m yogenesis. - Differentiation, 12, pp. 145–155.

    Google Scholar 

  • Ebert, J.D. (1953). Analysis of the synthesis and distribution of the contractile protein, myosin, in the development of the heart. - Proc. Natl. Acad. Sci. U.S.A., 39, pp. 333–344

    Google Scholar 

  • Ebert, J.D. and Kaighn, M.E. (1966). Keys to change: factors regulating differentiation. In: M. Locke, ed., Major problems in developmental biology, pp. 20–84. - New York and London, Academic Press.

    Google Scholar 

  • Eguchi, G. and Watanabe, K. (1973). Elicitation of lens formation from the ‘ventral iris’ epithelium of the newt by a carcinogen, N-methyl-N′ nitro -N nitrosoguanidine. - J. Embryol. exp. Morph., 30, pp. 63–71.

    Google Scholar 

  • Eguchi, G., Abe, S. and Watanabe, K. (1974). Differentiation of lens-like structures from newt epithelial cells in vitro. - Proc. Natl. Acad. Sci. U.S.A., 71, pp. 5052–5036.

    Google Scholar 

  • Ellison, M.L., Ambrose, E.J. and Easty, G.C. (1969). Chondrogenesis in chick embryo somites in vitro. - J. Embryol. exp. Morph., 21, pp. 331–340.

    Google Scholar 

  • Flickinger, R.A. (1962). Sequential gene action, protein synthesis and cullular differentiation. - In: G.H. Bourne and J.F. Danielli ed., Inter. Review of Cytology, 13, pp. 75–95.

  • Flickinger, R.A. (1976a). Effect of rate of replication upon transcription in chick embryo limb bud mesenchyme cells in organ culture. - Differentiation, 6, pp. 169–175.

    Google Scholar 

  • Flickinger, R.A. (1976b). The effect of growth rate on differentiation of chick embryo limb bud mesenchyme in organ culture. - Exp. Cell Res., 99, pp. 449–452.

    Google Scholar 

  • Flickinger, R.A. and Stone, G. (1960). Localization of lens antigens in developing frog embryos. - Exp. Cell Res., 21 pp. 541–547.

    Google Scholar 

  • Franco-Browder, S.J., de Rydt, J. and Dorfman, A. (1963). The identification of a sulfated mucopolysaccharide in chick embryos, stages 11–23. - Proc. Natl. Acad. Sci., 49, pp. 643–647.

    Google Scholar 

  • Frenster, J.H. and Herstein, P.R. (1973). RNA in gene expression. In: M.C. Niu and S.J. Segal, ed., The role of RNA in reproduction and development., pp. 330–338. - North Holland Publ. Co.

  • Gefter, M.L. (1975). DNA replication. - Ann. Rev. Biochem., 44, pp. 45–78.

    Google Scholar 

  • Georgiev, G.P. (1972). The structure of transcriptional units in eukaryotic cells. In: A.A. Moscona and A. Monroy ed., Current topics in developmental biology, 7, pp. 1–59. - New York, Academic Press.

    Google Scholar 

  • Grobstein, C. (1963). Cytodifferentiation and macromolecular synthesis. - In: M. Locke ed., Cytodifferentiation and macromolecular synthesis, pp. 1–14. - New York, Academic Press.

    Google Scholar 

  • Gurdon, J.B. (1973). Gene expression during cell differentiation. In: J.J. Head and O.E. Lowestein ed., Oxford Biology Readers, pp. 2–16. Oxford University Press.

  • Hadorn, E. (1958). Role of genes in developmental processes. In: W.D. Mc Elroy and B. Glass ed., The chemical basis of development, pp. 779–793. - Baltimore Maryland, Johns Hopkins Press.

    Google Scholar 

  • Holmes, D.S. and Bonner, J. (1973). Sequence composition and organization of the genome and of the nuclear RNA of higher organisms: an approach to understanding gene regulation. In: M.C. Niu and S.J. Segal ed., The role of RNA in reproduction and development, pp. 304–323. North Holland Publ. Co.

  • Holtzer, H. and Detwiler, S. (1953). An experimental analysis of the development of the spinal column. III: Induction of skeletogenous cells.- J. exp. Zool., 123, pp. 335–369.

    Google Scholar 

  • Hsiao, T.H. and Hsiao, C. (1979). Ecdysteroids in the ovary and the egg of the greater wax moth. - J. Insect Physiol., 25. pp. 45–52.

    Google Scholar 

  • Jacob, F. and Monod, J. (1961). On the regulation of gene activity. - Cold Spring Harbor Symp. Quant. Biol., 26, pp. 193–211.

    Google Scholar 

  • Jacobson, G.A. (1966). Inductive processes in embryonic development. - Science, 152, pp. 1–10.

    Google Scholar 

  • Jazdowska-Zagrodzinska, B. (1966). Experimental studies on the role of ‘polar granules’ in the segregation of the pole cells in Drosophila melanogaster. - J. Embryol. exp. Morph., 16, pp. 391–399.

    Google Scholar 

  • Kanehisa, T., Oki, Y., and Ikuta, K. (1974). Partial specificity of low-molecular weight RNA that stimulates RNA synthesis in various tissues. - Arch. Biochem. Biophys., 165, pp. 146–152.

    Google Scholar 

  • Karkinen-Jääskeläinen, M. (1978). Permissive and directive interactions in lens induction. J. Embryol. exp. Morph., 44, pp. 167–179.

    Google Scholar 

  • Kronenberg, L.H. and Humphreys, T. (1972). Double-stranded ribonucleic acid in sea urchin embryos. - Biochemistry, 11, pp. 2020–2026.

    Google Scholar 

  • Lash, J.W. (1963). Tissue interaction and specific metabolic responses: chondrogenetic induction and differentiation. In: M. Locke ed., Cytodifferentiation and macromolecular synthesis, pp. 235–260, - New York, Academic Press.

    Google Scholar 

  • Lash, J.W. (1967). Differential behaviour of anterior and posterior embryonic chick somites in vitro. - J. exp., 165, pp. 47–56.

    Google Scholar 

  • Lash, J.W. (1968). Phenotypic expression and differentiation: in vitro chondrogenesis. In: H. Ursprung ed., Results and problems in cell differentiation. Vol. I: The stability of the differentiated state. Berlin, -Springer Verlag.

    Google Scholar 

  • Lopashov, G.V. and Stroeva, O.G. (1964). Development of the eye. Experimental studies. (Transl. from Russian), Jerusalem, Israel Programme for Scientific Translations.

    Google Scholar 

  • Lundquist, A. and Emanuelsson, H. (1980). Polar granules and pole cells in the embryo of Calliphora erythrocephala: ultrastructure and (3H) leucine labelling. - J. Embryol. exp. Morphol., 57, pp. 79–93.

    Google Scholar 

  • Mahowald, A.P. (1971). Origin and continuity of polar granules. In: J. Reinbert and H. Ursprung, Origin and continuity of cell organelles, pp. 158–169. - New York, Springer-Verlag.

    Google Scholar 

  • Marzullo, G. and Lash, J.W. (1967). Separation of glycosaminoglycans on thin layers of silica gel. - Anal. Biochem., 18, pp. 575–578.

    Google Scholar 

  • Mayfield, J.E. and Bonner, J. (1971). Tissue differences in rat chromosomal RNA. - Proc. Natl. Acad. Sci., 68, pp. 2652–2655.

    Google Scholar 

  • Mayfield, J.E. and Bonner, J. (1972). A partial sequence of nuclear events in regenerating rat liver. - Proc. Natl. Acad. Sci. U.S.A., 69, pp. 7–10.

    Google Scholar 

  • Mc Donald, T.F., Sachs, H.G., Orr, C.W. and Ebert, J.D. (1972). External potassium and baby Hamster kidney cells: intracellular ions, ATP, growth, DNA synthesis and membrane potential. - Develop. Biol., 28, pp. 290–303.

    Google Scholar 

  • Medoff, J. (1967). Enzymatic events during cartilage differentiation in the chick embryonic limb bud. - Develop. Biol., 16, pp. 118–143.

    Google Scholar 

  • Medoff, J. and Zwilling, E. (1972). Appearance of myosin in chick limb bud. - Develop. Biol., 16, pp. 118–126.

    Google Scholar 

  • Monk, M. 1981, (in press). A stem-line model for cellular and chromosomal differentiation in early development. - Differentiation.

  • Nieuwkoop, P.D. and Sutasurya, L.A. (1979). Primordial germ cells in the chordates. Developmental and cell Biology, vol. 7. - Cambridge University Press.

  • Niu, M.C. and Deshpande, A.K. (1973). The development of tubular heart in RNA-treated post-nodal pieces of chick blastoderm. - J. Embryol. exp. Morphol., 29, pp. 485–501.

    Google Scholar 

  • Noda, K. and Kanai, C. (1977). An ultrastructural observation on Pelmatohydra robusta at sexual and asexual stages with a special reference to ‘germinal plasm’. - J. ultrastruct. Res., 61, pp. 284–294.

    Google Scholar 

  • Okada, T.S. (1975). ‘Transdifferentiation’ of cells from chick embryonic eye tissues in cell culture. - Develop. Growth and Different., 17, pp. 289–290.

    Google Scholar 

  • Okada, T.S., Yasuda, K. Araki, M. and Eguchi, G. (1979). Possible demonstration of multipotentional nature of embryonic neural retina by clonal cell culture. - Develop. Biol., 68, pp. 600–617.

    Google Scholar 

  • Orkin, R.W., Pollard, T.D. and Hay, E. (1973). SDS gel analysis of muscle proteins in embryonic cells. - Develop. Biology, 35, pp. 388–394.

    Google Scholar 

  • Perlman, S.M., Ford, P.J. and Rosbach, M.M. (1977). Presence of tadpole and adult globin sequences in oocytes of Xenopus Laevis. - Proc. Natl. Acad, Sci. U.S.A., 74, pp. 3835–3839.

    Google Scholar 

  • Perlmann, P. and De Vincentiis, M. (1961). Lens antigen in the microsomal fraction of early chick embryos. - Exp. Cell Res., 23, pp. 612–616.

    Google Scholar 

  • Pollard, T.D. and Weihig, T.T. (1974). Actin and myosin and cell movement. - Critical Rev. of Biochem., 2, pp. 1–65.

    Google Scholar 

  • Pritchard, D.J., Clayton, R.M. and de Pomerai, D.I. (1978). ‘Transdifferentiation’ of chicken neural retina into lens and pigment epithelium in culture: controlling influences. - J. Embryol exp. Morph., 48, pp. 1–21.

    Google Scholar 

  • Searls, R. L. (1965). Isolation of mucopolysaccharide from the precartilaginous embryonic chick limb bud. - Proc. exp. Biol. (N.Y.), 118, pp. 1172–1176.

    Google Scholar 

  • Sommerville, J. (1977). Gene activity in the lampbrush chromosomes of amphibian oocytes. - In: J. Paul ed., International review of biochemistry, Biochemistry of cell Differentiation, vol. 15, pp. 79–156. - Baltimore, University Park Press.

    Google Scholar 

  • Spiegel, M. (1960). Protein changes in development. - Biol. Bull., 118, pp. 451–462.

    Google Scholar 

  • Stephens, T. D., Vasan, N. S. and Lash, J. W. (1980). Extracellular matrix synthesis in the chick embryo lateral plate prior to and during limb outgrowth. - J. Embryol. exp. Morp., 59, pp. 71–87.

    Google Scholar 

  • Sturgess, E.A., Ballantine, J.E.M., Woodland, H.R., Mohun, P.R., Lane, C.D. and Dimitriadis, G.J. (1980). Actin synthesis during early development of Xenopus leavis. - J. Embryol. exp. Morph., 58, pp. 303–320.

    Google Scholar 

  • Thomson, I, de Pomerai, D.I., Jackson, J.F. and Clayton, R.M. (1979). Low specific RNA in transdifferentiating cultures of embryonic chick neural retina and pigmented epithelium. - Exp. Cell Res., 122, pp. 73–81.

    Google Scholar 

  • Trampusch, H.A.L. and Harrebomée, A.E. (1965). Dedifferentiation, a prerequisite of regeneration. - In: V. Kiortsis and H.A.L. Trampusch, ed., Regeneration in animals and related problems, pp. 341–374. - North-Holland Publishing Co.

  • Tsai, S.Y., Tsai, M.J. Lin, C.T. and O'Malley, B.W. (1979). Effect of oestrogen on ovalbumin gene expession in differentiated non target tissues. - Biochemistry, 18, pp. 5726–5731.

    Google Scholar 

  • Weber, R. (1967). Biochemistry of amphibian metamorphoses. - In: M. Florkin and E.M. Stotz eds., Morphogenesis, differentiation and development. Comprehensive Biochemistry. 28, pp. 145–198. - Elsevier.

  • Weinberg, E.S. (1977). Programmed information flow in the sea urchin embryo. In: J. Paul ed., Biochemistry of cell differentiation II, vol 15. pp. 157–193. - Baltimore, University Park Press.

    Google Scholar 

  • Wilt, F. (1962). The ontogeny of chick embryo hemoglobin. - Proc. Nat. Acad. Sci. U.S.A., 48, pp. 1582–1590.

    Google Scholar 

  • Zagris, N. (1980). Erythroid cell differentiation in unincubated chick blastoderm in culture. - J. Embryol. exp. Morphol., 58, pp. 209–216.

    Google Scholar 

  • Zagris, N. and Melton, C.G. (1978). Hemoglobins in single chick erythrocytes as determined by a differential elution procedure. - Z. Naturforsch., 33, pp. 330–336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandebois, R. The problem of automation in animal development: confrontation of the concept of cell sociology with biochemical data. Acta Biotheor 30, 143–169 (1981). https://doi.org/10.1007/BF00047007

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047007

Keywords

Navigation