Skip to main content
Log in

Exactly and completely integrable nonlinear dynamical systems

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

This survey is devoted to a consistent exposition of the group-algebraic methods for the integration of systems of nonlinear partial differential equations possessing a nontrivial internal symmetry algebra. Samples of exactly and completely integrable wave and evolution equations are considered in detail, including the generalized (periodic and finite nonperiodic) Toda lattice, nonlinear Schrödinger, Korteweg-de Vries, Lotka-Volterra equations, etc.). For exactly integrable systems, the general solutions of the Cauchy and Goursat problems are given in an explicit form, while for completely integrable systems an effective method for the construction of their soliton solutions is developed.

Application of the developed methods to a differential geometry problem of the classification of integrable manifolds embeddings is discussed.

Supersymmetric extensions are constructed for exactly integrable systems. Using an example of the generalized Toda lattice, a quantization scheme is developed. It includes an explicit derivation of the corresponding Heisenberg operators and their description in terms of Hopf-type quantum algebras.

Among multidimensional systems, the four-dimensional self-dual Yang-Mills equations are investigated with the aim of constructing their general solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leznov, A. N. and Saveliev, M. V.: Nonlinear equations and graded Lie algebras, J. Sov. Math. 36 (1987), 699–721.

    Google Scholar 

  2. Leznov, A. N. and Saveliev, M. V.: Group Methods for Integration of Nonlinear Dynamical Systems, Nauka, Moscow, 1985 (in Russian). To be publ. by Birkhäuser-Verlag.

    Google Scholar 

  3. Bogolubov, N. N., Logunov, A. A., Oksak, A. I., and Todorov, I. T.: General Principles of Quantum Field Theory, Nauka, Moscow, 1987 (in Russian) To be publ. by Kluwer (1989).

    Google Scholar 

  4. Leznov, A. N. and Saveliev, M. V.: Two-dimensional exactly and completely integrable systems (Monopoles, instantons, dual models, relativistic strings, Lund-Regge model, generalized Toda lattice, etc.), Commun. Math. Phys. 89 (1983), 59–75.

    Google Scholar 

  5. Manin, Yu. I. (ed.): Geometrical Ideas in Physics, Mir, Moscow, 1983 (in Russian).

    Google Scholar 

  6. Leznov, A. N. and Saveliev, M. V.: Exact cylindrically-symmetric solutions of classical equations for arbitrary compact Lie group. I, Fiz. Element. Chastits At. Yad. 11 (1980), 40–91 (in Russian); Exact solutions for cylindrically-symmetric configurations of gauge fields. II, ibid. 12 (1981), 125–161.

    Google Scholar 

  7. Leznov, A. N., Man'ko, V. I., and Saveliev, M. V.: Soliton solutions to non-linear equations and group representation theory, in V. L. Ginzburg (ed.), Solitons and Instantons, Operator Quantization, Nova Science Publ. Commack, New York, 1986, pp. 83–267.

    Google Scholar 

  8. Leznov, A. N. and Saveliev, M. V.: Spherically-symmetric equations in gauge theories for an arbitrary semi-simple compact Lie group, Phys. Lett. B 79 (1978), 294–297.

    Google Scholar 

  9. Leznov, A. N. and Saveliev, M. V.:A system of nonlinear partial differential equations x α, zž=exp(kx) α, Funkts. Anal. Prilozhen (in Russian) [Funct. Anal. Appl.] 14 (1980), 87–89; Representation theory of the groups and nonlinear system x α, zž=exp(kx) α,Physica D, 3 (1981), 62–82.

    Google Scholar 

  10. Fedoseev, I. A., Leznov, A. N., and Saveliev, M. V.: One-dimensional exactly integrable dynamical systems (classical and quantum regions), Nuovo Cim. A. 76 (1983), 596–612.

    Google Scholar 

  11. Leznov, A. N. and Saveliev, M. V.: Exact monopole solutions in gauge theories for an arbitrary semisimple compact group, Lett. Math. Phys. 3 (1979), 207–210; Cylindrically-symmetric instantons for the gauge groups of rank 2: SU(3), O(5) and G 2, Phys. Lett. B, 83 (1979), 314–317; Cylindrically-symmetric instantons for an arbitrary compact gauge group, Preprint IHEP 78–177, Serpukhov, 1978.

    Google Scholar 

  12. Leznov, A. N.: On complete integrability of a nonlinear system of partial differential equations in two-dimensional space, Teor. Mat. Fiz. (in Russian) [Sov. J. Theor. Math. Phys.] 42 (1980), 343–349.

    Google Scholar 

  13. Kostant, B.: The solution to a generalized Toda lattice and representation theory, Adv. Math. 34 (1979), 195–338.

    Google Scholar 

  14. Volterra, V., Leçons sur la théorie mathèmatique de la lutte pour la vie, Gauthier-Villars, Paris, 1931.

    Google Scholar 

  15. Zakharov, V. E., Musher, S. L., and Rubenchik, A. M.: On the nonlinear stage of the parametric excitation of waves in plasma, Pis'ma Zh. Eksp. Teor. Fiz. (in Russian) [Sov. Phys. JETP] 19 (1974), 249–253; Kac, M. and van Moerbeke, P.: On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices, Adv. Math. 16 (1975), 160–169; Manakov, S. V.: On complete integrability and stochastization in discrete dynamical systems, Zh. Eksp. Teor. Fiz. (in Russian) [Sov. Phys. JETP] 67 (1974), 543–555.

    Google Scholar 

  16. Exact treatment of nonlinear lattice waves, Supp. Prog. Theor. Phys. 59 (1976), 1–161; Toda, M.: Studies of a nonlinear lattice, Phys. Repts. C 18 (1975), 1–123.

    Google Scholar 

  17. Bellman, R., Mathematical Methods in Medicine, World Scientific, Singapore, 1983; Jones, W. B. and Thron, W. J.: Continued Fractions. Analytic theory and applications, Addison-Wesley, Mass., 1980.

    Google Scholar 

  18. Leznov, A. N., Saveliev, M. V., and Smirnov, V. G.: General solutions of a two-dimensional system of Volterra equations realizing a Bäcklund transformation for the Toda lattice, Teoret. Mat. Fiz. (in Russian) [Sov. J. Theor. Mat. Phys.] 47 (1981), 216–224.

    Google Scholar 

  19. Leznov, A. N.: Exactly integrable two-dimensional dynamical systems connected with super-symmetric algebras, Preprint IHEP 83-7, Serpukhov, 1983.

  20. Leznov, A. N.: The internal symmetry group and methods of field theory for integrating exactly soluble dynamic systems, in R. Z. Sagdeev (ed.), Nonlinear Processes in Physics and Turbulence, Gordon and Breach, New York, 1984, pp. 443–457.

    Google Scholar 

  21. Mansfield, P.: Solution of Toda systems, Nucl. Phys. B 208 (1982), 277–300.

    Google Scholar 

  22. Kac, V. G.: Lie superalgebras, Adv. Math. 26 (1977), 8–96; Infinite-dimensional algebras, Dedekind's ν-function, classical Möbius function and very strange formula, Adv. Math. 30 (1978), 85–134.

    Google Scholar 

  23. Saveliev, M. V.: Integrable graded manifolds and nonlinear equations, Commun. Math. Phys. 95 (1984), 199–216.

    Google Scholar 

  24. Leznov, A. N. and Saveliev, M. V.: Two-dimensional supersymmetric nonlinear equations associated with the embeddings of the osp(1/2) subsuperalgebra in Lie superalgebras, Teoret. Mat. Fiz. (in Russian) [Sov. J. Theor. Math. Phys.] 61 (1984), 150–154.

    Google Scholar 

  25. Leites, D. A., Saveliev, M. V., and Serganova, V. V.: Embeddings of subsuperalgebra osp(1|2) and nonlinear equations, Preprint IHEP 85–81, Serpukhov, 1985; Embeddings of osp(N|2) and the associated nonlinear supersymmetric equations, in M. A. Markov, V. I. Man'ko, and V. V. Dodonov (eds.), Group Theoretical Methods in Physics, VNU Science Press, Utrecht, 1986, Vol. 1, pp. 255–297.

    Google Scholar 

  26. Leznov, A. N., Leites, D. A. and Saveliev, M. V.: Superalgebra B(0, 1) and explicit integration of the supersymmetric Liouville equation, Phys. Lett. B 96 (1980), 97–100.

    Google Scholar 

  27. Ivanov, E. A. and Krivonos, S. O.: U(1) supersymmetric extension of the Liouville equation, Lett. Math. Phys. 7 (1983), 523–531.

    Google Scholar 

  28. Ibragimov, N. H.: Transformation Groups Applied to Mathematical Physics, D. Reidel, Dordrecht, 1987.

    Google Scholar 

  29. Shabat, A. B. and Yamilov, R. I.: Exponential systems, Preprint of the Bashkir Division of the Academy of Sciences of the USSR 23, Ufa, 1981.

  30. Leznov, A. N., Smirnov, V. G., and Shabat, A. B.: Internal symmetry groups and the integrability conditions of two-dimensional dynamical systems, Teoret. Mat. Fiz. (in Russian) [Sov. J. Theor. Math. Phys.] 51 (1982), 10–21; Leznov, A. N. and Shabat, A. B.: Break off conditions of perturbation series, in A. B. Shabat (ed.), Integrable Systems, Bashkir Division of the Academy of Sciences of the USSR. Ufa., 1982, pp. 34–45.

    Google Scholar 

  31. Mikhailov, A. V., Shabat, A. B., and Yamilov, R. I.: Symmetry approach for a classification of nonlinear equations, Uspekhi Mat. Nauk (in Russian) [Russian Math. Surveys] 42 (1987), 3–53.

    Google Scholar 

  32. Leznov, A. N., Man'ko, V. I., and Chumakov, S. M.: Dynamical symmetries of nonlinear equations, in A. A. Komar (ed.), Group Theory and the Gravitation and Physics of Elementary Particles, Nova Science Publ. Commack, New York, 1986, pp. 232–277.

    Google Scholar 

  33. Leznov, A. N. and Saveliev, M. V.: Field theoretical methods of integrating two-dimensional exactly solvable dynamical models (classical and quantum regions); in A. A. Logunov (ed.), Problems of High Energy Physics and Quantum Field Theory, IHEP, Serpukhov, 1982, vol. 1, pp. 218–282.

    Google Scholar 

  34. Fedoseev, I. A. and Leznov, A. N.: Translationally invariant quantization of the generalized Toda lattices, Phys. Lett. B 141 (1984), 100–103; Exactly integrable models of quantum field theory with exponential interaction in two-dimensional space, Teoret. Mat. Fiz. (in Russian) [Sov. J. Theor. Math. Phys.] 53 (1982), 358–373.

    Google Scholar 

  35. Fedoseev, I. A., Leznov, A. N., and Saveliev, M. V.: Heisenberg operators of generalized Toda lattice, Phys. Lett. B 116 (1982), 49–52; Exactly solvable quantum-mechanical and two-dimensional quantum field systems. III, Fiz. Element. Chastits At. Yad. (in Russian) [Phys. Element. Particles and Atomic Nucl.] 16 (1985), 112–163.

    Google Scholar 

  36. Leznov, A. N. and Mukhtarov, M. A.: Internal symmetry algebra of exactly integrable dynamical systems in quantum region, Teor. Mat. Fiz. (in Russian) [Sov. J. Theor. Math. Phys.] 71 (1987), 46–53.

    Google Scholar 

  37. Drinfeld, V. G.: Hopf algebras and quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR (in Russian) [Sov. Math. Dokl.] 283 (1985), 1060–1064.

    Google Scholar 

  38. Dubrovin, B. A., Fomenko, A. T., and Novikov, S. P.: Modern Geometry, Nauka, Moscow, 1979 (in Russian).

    Google Scholar 

  39. Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, John Wiley, New York, Vol. 1, 1963; Vol. 2, 1969.

    Google Scholar 

  40. Eisenhart, L. P.: Riemannian Geometry, Princeton Univ. Press, Princeton, New Jersey, 1964.

    Google Scholar 

  41. Saveliev, M. V.: Classification problem for exactly integrable embeddings of two-dimensional manifolds and coefficients of the third fundamental forms, Teor. Mat. Fiz. (in Russian) [Sov. J. Theor. Math. Phys.] 60 (1984), 9–23.

    Google Scholar 

  42. Saveliev, M. V.: Multidimensional nonlinear systems, Teor. Mat. Fiz. (in Russian) [Sov. J. Theor. Math. Phys.] 69 (1986), 411–419; Multidimensional nonlinear equations: Bourlet-type systems and their generalizations, Dokl. Akad. Nauk SSSR (in Russian) [Sov. Math. Dokl.] 292 (1987), 582–585; Rcheulishvili, G. L. and Saveliev, M. V.: Multidimensional nonlinear systems associated with the Grassmannians BI and DI, Funkts. Anal. Prilozhen (in Russian) [Functional Anal. and its Appl.] 21 (1987), 83–84.

    Google Scholar 

  43. Bianchi, L.: Lezioni di geometria differenzialle, Nicola Zanichelli ed., Bologna, 1924, vol. 2.

    Google Scholar 

  44. Aminov, Yu. A.: Isometric immersions of domains of n-dimensional Lobachevsky space in (2n−1)-dimensional Euclidean space, Matem. Sb. (in Russian) [Math. USSR Sb.] 111 (1980), 359–386; On immersions of n-dimensional Lobachevsky space in 2n-dimensional Euclidean space with n principal direction fields, Ukrain. Geom. Sb. (in Russian) [Ukrain. Geom. Sb.] 38 (1985), 3–8.

    Google Scholar 

  45. Darboux, G.: Leçons sur la thèorie gènerale des surfaces, Paris, 1896, Livre 7, Chap. 12.

  46. Tenenblat, K. and Chuu-Lian Terng:Bäcklund's theorem for n-dimensional submanifolds ofR 2n−1,Ann. Math. 111 (1980), 477–490.

    Google Scholar 

  47. Ablowitz, M. J., Beals, R., and Tenenblat, K.: On the solution of the generalized wave and generalized sine-Gordon equations, Stud. Appl. Math. 74 (1986), 177–203.

    Google Scholar 

  48. Zakharov, V. E., Manakov, S. V., Novikov, S. P., and Pitaevsky, L. P.: Theory of Solitons. The Method of the Inverse Scattering Problem, Nauka, Moscow, 1980 (in Russian).

    Google Scholar 

  49. Takhtadjan, L. A. and Faddeev, L. D.: Hamiltonian Approach in the Soliton Theory, Nauka, Moscow, 1986 (in Russian).

    Google Scholar 

  50. Calogero, F. and Degasperis, A.: Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations, North-Holland, Amsterdam, 1982.

    Google Scholar 

  51. Marchenko, V. A.: Nonlinear Equations and Operator Algebras, D. Reidel, Dordrecht, 1988.

    Google Scholar 

  52. Ablowitz, M. J. and Segur, H.: Solitons and the Inverse Scattering Transform, SIAM Appl. Math., Phil., 1981.

    Google Scholar 

  53. Zakharov, V. E. and Shabat, A. B.: An integration scheme for nonlinear equations of mathematical physics by the inverse scattering problem I, II, Funkts. Anal. Prilozhen (in Russian) [Funct. Anal. Appl.] 8 (1974), 43–53; 13 (1979), 13–22.

    Google Scholar 

  54. Kac, V. G.: Infinite-Dimensional Lie Algebras, Birkhäuser, Boston, 1985.

    Google Scholar 

  55. Chumakov, S. M., Leznov, A. N., and Man'ko, V. I.: Ordinary second-order differential equations and soliton solutions connected with the algebra sl(2, R); Lett. Math. Phys. 8 (1984), 297–303; An algebraic approach to solition solutions, ibid. 8 (1984), 413–419; Soliton solutions of nonlinear equations associated with the sl(2, R) group, Kratkie soobshchenia po Fiz. FIAN 7 (1984), 28–32 (in Russian).

    Google Scholar 

  56. Leznov, A. N., Man'ko, V. I., and Chumakov, S. M.: Soliton solutions for chiral dynamical systems, Preprint Moscow Lebedev Inst. 70, 1984.

  57. Leznov, A. N., Man'ko, V. I., and Chumakov, S. M.: Symmetries and soliton solutions of nonlinear equations, Teor. Mat. Fiz. (in Russian) [Sov. J. Theor. Math. Phys.] 63 (1985), 50–63.

    Google Scholar 

  58. Leznov, A. N.: Method of inverse problem in invariant form with respect to representations of internal symmetry algebra, Teor. Mat. Fiz. (in Russian) [Sov. J. Theor. Math. Phys.] 58 (1984). 156–160; Generalized Bargmann potentials, Lett. Math. Phys. 8 (1984), 379–385; Soliton solutions and scalar LA-pair, Funkts. Anal. Prilozhen. (in Russian) [Functional Anal. Appl.] 18 (1984), 83–85.

    Google Scholar 

  59. Prasad, M. K., Sinha, A., and Wang, L.-L. Chau: Nonlocal continuity equations for self-dual SU(n) Yang-Mills fields, Phys. Lett. B. 87 (1979), 237–238.

    Google Scholar 

  60. Leznov, A. N.: Solitons of two-dimensional chiral field and solutions to four-dimensional self-dual Yang-Mills equations, Preprint IHEP 86-81, Serpukhov, 1986.

  61. Leznov, A. N.: On equivalence of four-dimensional self-duality equations to continual analog of the main chiral field problem, Preprint IHEP 86-188, Serpukhov, 1986.

  62. Krichever, I. M.: Analog of the d'Alembert formula for the principal chiral field and sine-Gordon equations, Dokl. Akad. Nauk SSSR (in Russian) [Sov. Math. Dokl.] 253 (1981), 288–291.

    Google Scholar 

  63. Corrigan, E., Fairlie, D., Goddard, P., and Yates, R. G.: The construction of self-dual solutions to SU(2) gauge theory, Commun. Math. Phys. 58 (1978), 223–240.

    Google Scholar 

  64. Kirzhnitz, D. A.: On statistic theory of many particles, in D. V. Skobeltzin (ed.), Some Problems of Theoretical Physics, Sov. Acad. Sci., Moscow, 1961, pp. 3–49 (in Russian).

    Google Scholar 

  65. Leznov, A. N.: On two-dimensional formulation of four-dimensional system of self-dual Yang-Mills equations, Preprint IHEP 87-21, Serpukhov, 1987.

  66. Leznov, A. N. and Mukhtarov, M. A.: Deformation of algebras and solution of self-duality equation, Preprint IHEP 86-191, Serpukhov, 1986.

  67. Mushelishvili, N. I.: Singular Integral Equations, P. Noordhoff, Groningen, 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leznov, A.N., Saveliev, M.V. Exactly and completely integrable nonlinear dynamical systems. Acta Appl Math 16, 1–74 (1989). https://doi.org/10.1007/BF00046886

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00046886

AMS subject classification (1980)

Key words

Navigation