Agroforestry Systems

, Volume 7, Issue 2, pp 103–114 | Cite as

Litter production and nutrient cycling in coffee (Coffea arabica) or cacao (Theobroma cacao) plantations with shade trees

  • John Beer


The relative importance of N fixation, organic material inputs and nutrient inputs in litterfall, as justifications for including shade trees in plantations of coffee or cacao, is discussed. According to existing data, N fixation by leguminous shade trees does not exceed 60 kg.N/ha/a. However, these trees contribute 5,000–10,000 kg. organic material/ha/a.

Comparisons are made between the leguminous shade tree Erythrina poeppigiana and the non-leguminous timber tree Cordia alliodora. The former, when pruned 2 or 3 times/a., can return to the litter layer the same amount of nutrients that are applied to coffee plantations via inorganic fertilizers, even at the highest recommended rates for Costa Rica of 270 kg.N, 60 kg.P, 150 kg.K/ha/a. The annual nutrient return in this litterfall represents 90–100 percent of the nutrient store in above-ground biomass of E. poeppigiana, and hence the consequences of competition with the crop should not be a serious limitation. In the case of C. alliodora, which is not pruned, nutrient storage in the tree stems, especially of K, is a potential limiting factor to both crop and tree productivity.

It is concluded that, in fertilized plantations of cacao and coffee, litter productivity is a more important shade tree characteristic than N fixation.

Key words

Agroforestry Coffea arabica Cordia alliodora litterfall nitrogen fixing nutrient cycling review shade trees Theobroma cacao 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achutha Rao YR (1960) Shade trees for coffee: Erythrina lithosperma. Indian Coffee 24: 500–505Google Scholar
  2. 2.
    Adams SN and McKelvie AD (1955) Environmental requirements of cocoa in the Gold Coast. In: Rep Cocoa Conf, p 25. London/England. The Cocoa, Chocolate and Confectionary AllianceGoogle Scholar
  3. 3.
    Alpizar L, Fassbender HW and Heuveldop J (1983) Estudio de sistemas agroforestales en el experimento central de CATIE, Turrialba. III Producción de residuos vegetales. Turrialba/Costa Rica. Centro Agronomico Tropical de Investigación y Enseñanza. 14 pGoogle Scholar
  4. 4.
    Aranguren J, Escalante G and Herrera R (1982a) Nitrogen cycle of tropical perennial crops under shade trees: I Coffee. Plant Soil 67: 247–258Google Scholar
  5. 5.
    Aranguren J, Escalante G and Herrera R (1982b) Nitrogen cycle of tropical perennial crops under shade trees: II Cacao. Plant Soil 67: 259–269Google Scholar
  6. 6.
    Babbar L (1983) Descomposición del follaje en ecosistemas sucesionales en Turrialba, Costa Rica. M. Sc. Thesis. Turrialba/Costa Rica. Centro Agronómico Tropical de Investigación y Enseñanza-Universidad de Costa Rica. 79 pGoogle Scholar
  7. 7.
    Beer JW (1987) Advantages, disadvantages and desirable characteristics of shade trees for coffee, cacao and tea. Agroforestry Systems 5: 3–13CrossRefGoogle Scholar
  8. 8.
    Boyer J (1973) Cycles de la matiere organique et des elements mineraux dans une cacayere Cameraunaise. Cafe Cacao The 17 (1): 3–24Google Scholar
  9. 9.
    Budowski G (1981) Applicability of agro-forestry systems. In: MacDonald LH, ed, Agroforestry in the african humid tropics, pp 13–16. Tokyo/Japan. United Nations UniversityGoogle Scholar
  10. 10.
    Budowski G, Kass D and Russo R (1984) Leguminous trees for shade. Pesq Agropec Bras 19 (Special volume): 205–222Google Scholar
  11. 11.
    Costa Rica Ministerio de Agricultura Y Ganaderia (1978) Manual de recomendaciones para cultivar café, 3 ed, p 27. San José/Costa Rica. Oficina de CaféGoogle Scholar
  12. 12.
    Cuenca G, Aranguren J and Herrera R (1983) Root growth and litter decomposition in a coffee plantation under shade trees. Plant Soil 71: 477–486CrossRefGoogle Scholar
  13. 13.
    Escalante G, Herrera R and Aranguren J (1984) Fijación de nitrógeno en árboles de sombra (Erythrina poeppigiana) en cacaotales del Norte de Venezuela. Pesqui Agropecu Bras 19 (Special volume): 223–230Google Scholar
  14. 14.
    Ewel JJ (1976) Litter fall and leaf decomposition in a tropical forest succession in Eastern Guatemala. Ecol 64: 293–308Google Scholar
  15. 15.
    Fassbender HW, Alpizar L, Heuveldop J, Enriquez G and Folster H (1985) Sistemas agroforestales de café (Coffea arabica) con laurel (Cordia alliodora) y café con poró (Erythrina poeppigiana) en Turrialba, Costa Rica. III Modelos de la materia orgánica y los elementos nutritivos. Turrialba 35: 403–413Google Scholar
  16. 16.
    Fassbender HW (1985) Nutrient cycling in agroforestry systems of coffee (Coffea arabica) with shade trees in the Central Experiment of CATIE. Proc Seminar ‘Advances in Agroforestry Research’, Sept 1–10 1985, Turrialba/Costa Rica. Centro Agronómico Tropical de Investigación y Enseñanza. (In press)Google Scholar
  17. 17.
    Glover N and Beer JW (1984) Spatial and temporal fluctuations of litterfall in the agroforestry associations Coffea arabica var. Caturra — Erythrina poeppigiana and C. arabica var. Caturra — E. poeppigianaCordia alliodora. Turrialba/Costa Rica. Centro Agronómico Tropical de Investigaciíon y Enseñanza. 49 pGoogle Scholar
  18. 18.
    Glover N and Beer JW (1986) Nutrient cycling in two traditional Central American agroforestry systems. Agroforestry Systems 4: 77–87CrossRefGoogle Scholar
  19. 19.
    Granados N (1972) Mineralización del azufre en suelos bajo cacao. M. Sc. Thesis. Turrialba/Costa Rica. Instituto Interamericano de Cooperación para la Agricultura. 56 pGoogle Scholar
  20. 20.
    Haliday J (1981) Agotechnologies based on symbiotic systems that fix nitrogen. In: Background papers for innovative biological technologies for lesser developed countries, pp 243–273. Washington/USA. U.S. Government Printing OfficeGoogle Scholar
  21. 21.
    Hardy F (1959) La relación carbono-nitrógeno en los suelos de cacao. Turrialba 9: 4–11.Google Scholar
  22. 22.
    Heuveldop J, Alpizar L, Fassbender HW, Enriquez G and Folster H (1985) Sistemas agroforestales de café (Coffea arabica) con laurel (Cordia alliodora) y café con poró (Erythrina poeppigiana) en Turrialba, Costa Rica. II Producción agricola, maderable y de residuos vegetales. Turrialba 35: 347–355Google Scholar
  23. 23.
    Jenny H (1941) Factors of soil formation. New York: McGraw 281 pGoogle Scholar
  24. 24.
    Jimenez AE and Martinez P (1979a) Estudios ecológicos de agro-ecosistema cafetalero: I. Estructura de los cafetales de una finca cafetalera en Coatepec Ver. México. Biótica 4(1): 1–12Google Scholar
  25. 25.
    Jimenez AE and Martinez P (1979b) Estudios ecológicos del agro-ecosistema cafetalero: II Producción de materia orgánica en diferentes tipos de estructura. Biótica 4 (3): 109–126Google Scholar
  26. 26.
    Jordan CF (1985) Nutrient cycling in tropical forest ecosystems. New York: Willey pp 28–32Google Scholar
  27. 27.
    McCaffrey D (1972) Volume tables for laurel, Cordia alliodora in Northern Costa Rica. Turrialba 22(4): 449–453Google Scholar
  28. 28.
    Nair PKR (1979) Intensive multiple cropping with coconuts in India. Berlin: Paul Parey pp 69–82Google Scholar
  29. 29.
    Nye PH and Greeland PJ (1960) The soil under shifting cultivation. Farnham Royal/England. Commonw Agric Bur Tech Commun No. 51. 156 pGoogle Scholar
  30. 30.
    Quinlan M (1984) Mulches from two tropical tree species: Erythrina poeppigiana (Walpapers) O.F. Cook and Gmelina arborea Rox, as nitrogen sources in the production of maize (Zea mays L.). M. Sc. Thesis. Turrialba/Costa Rica. Centro Agronómico Tropical de Investigación y Enseñanza-Universidad de Costa Rica 74 pGoogle Scholar
  31. 31.
    Roskoski J (1981) Nodulation and N2 fixation by Inga jinicuil, a woody legume in coffee plantations: I. Measurements of nodule biomass and field C2H2 reduction rates. Plant Soil 59: 201–206CrossRefGoogle Scholar
  32. 32.
    Roskoski JP and Van Kessel C (1985) Annual, seasonal and diel variation in nitrogen fixing activity by Inqa jinicuil, a tropical legume tree. Oikos 44: 306–312Google Scholar
  33. 33.
    Russo R and Budowski G (1986) Effect of pollarding frequency on biomass of Erythrina poeppigiana as a coffee shade tree. Agroforestry Systems 4: 145–162CrossRefGoogle Scholar
  34. 34.
    Santana MB and Cabala P (1982) Dynamics of nitrogen in a shaded cacao plantation. Plant Soil 67: 271–281CrossRefGoogle Scholar
  35. 35.
    Santana MB and Cabala P (1985) Reciclagem de nutrientes em uma plantacao de cacau sombreada com Eritrina In: Proc IX Int Cocoa Res Conf, Togo 1984, pp. 205–210 Lagos/Nigeria. Cocoa Producers AllianceGoogle Scholar
  36. 36.
    Somarriba E and Beer JW (1987) Dimensions, volumes and growth of Cordia alliodora in agroforestry systems. For Ecol Manag 18: 113–126Google Scholar
  37. 37.
    Suarez de F and Rodriguez A (1955) Equilibrio de materia orgánica en plantaciones de café. Chinchina/Columbia. Federación Nacional de Cafetaleros Bol Téc 2 (15): 5–28Google Scholar
  38. 38.
    Suarez de Castro F, Montenegro L, Aviles PC, Moreno MM and Bolamos M (1961) Efecto del sombrio en los primeros años de vida de un cafetal. Santa Tecla/El Salvador. Inst Salvadoreño Invest Café. 36 pGoogle Scholar
  39. 39.
    Vitousek PM (1984) Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65(1): 285–298Google Scholar
  40. 40.
    Willey RW (1975) The use of shade in coffee, cacao and tea. Hortic Abstr 45(12): 791–798Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • John Beer
    • 1
  1. 1.Centro Agronomico Tropical de Investigacion y EnseñanzaTurrialbaCosta Rica

Personalised recommendations