Skip to main content
Log in

The natural history of a family of transplantable melanomas in hamsters

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

We have characterized a family of transplantable melanomas in Syrian (golden) hamsters, which originated in 1959 as a spontaneous melanoma of hamster skin, and which has been maintained since then by serial passage. Emphasis has been placed on using the same method of transplantation, keeping strict records on all passages, and applying the same investigative techniques, in order to trace tumor behavior over long periods of time. This tumor family consists of five variants linked by common origin, but which differ with respect to differentiation level, malignancy, intermediary metabolism, chromosome number, and cell surface properties. Once established, these melanomas possessed a considerable degree of phenotypic stability over decades of passaging.

One tumor line in this family is emphasized. The Ab amelanotic melanoma lost its differentiated functions (the ability to synthetize melanin) a quarter of a century ago, and since then has remained dedifferentiated in serial passage in hamsters. After transfer to primary cell culture, the Ab melanoma cells differentiate readily and lose much of their proliferative potential. This process is reversible by reimplantation of the cells into a hamster.

Inasmuch as this hamster melanoma system meets many of the conditions required for an experimental tumor model, five melanoma variants are characterized concisely and compared to other melanomas in humans and animals. Mechanisms by which new melanoma variants arise are discussed and compared to some phenomena in the evolution of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schirrmacher V: Cancer metastasis: experimental approaches, theoretical concepts, and impacts for treatment strategies. Adv Cancer Res 43: 1–73, 1985

    Google Scholar 

  2. Bagnara J, Klaus SN, Paul E, Shartl M (eds) Pigment Cell. Biological, Molecular and Clinical Aspects of Pigmentation. University of Tokyo Press, Tokyo, 1985

    Google Scholar 

  3. Fidler IJ, Talmadge JE: The evolution of biologic diversity in metastases. Transplantation Proc 96: 370–372, 1984

    Google Scholar 

  4. Wolman SR, McMorrow LE, Fidler IJ, Talmadge JE: Development and progression of karyotypic variability in melanoma K1735 following X-irradiation. Cancer Res 45: 1839–1843, 1985

    Google Scholar 

  5. Stackpole CW, Fornabaio DM, Alterman AL: Phenotypic interconversion of B16 melanoma clone cell populations. Int J Cancer 35: 667–674, 1985

    Google Scholar 

  6. Millikan LE, Smith LL, Ochsner JC: Animal models in melanoma. In: Maibach HI, Lowe NJ (eds) Models in Dermatology Vol. 1. Karger, Basel, 1985, pp 23–33

    Google Scholar 

  7. Loustalot P, Algire GH, Legallais FY, Anderson BF: Growth and histopathology of melanotic and amelanotic derivatives of the Cloudman melanoma S-91. J Natl Cancer Inst 12: 1079–1118, 1952

    Google Scholar 

  8. Harding HE, Passey RD: A transplantable melanoma of the mouse. J Path Bact 33: 417–427, 1930

    Google Scholar 

  9. Fortner JG, Mahy AG, Schrodt GR: Transplantable tumors of the Syrian (golden) hamster. Part I: Tumors of the alimentary tract, endocrine glands and melanomas. Cancer Res 21, Suppl 10: 161–198, 1961

    Google Scholar 

  10. Greene HSN: A spontaneous melanoma in the hamster with a propensity for amelanotic alteration and sarcomatous transformation during transplantation. Cancer Res 18: 422–425, 1958.

    Google Scholar 

  11. Moore GE: In vitro cultures of a pigmented hamster melanoma cell line. Exp Cell Res 36: 422–423, 1964

    Google Scholar 

  12. Rasheed S: Characterization of a differentiated cat melanoma cell line. Cancer Res 43: 3379–3384, 1983

    Google Scholar 

  13. Chernozemski I, Raichev R: Two transplantable lines from melanomas induced in Syrian hamsters with 9,10 dimethy,1,2-benz/a/anthracene (DMBA). Neoplasma 13: 577–582, 1966

    Google Scholar 

  14. Berkelhammer J, Oxenhandler RW, HookJr RR, Hennessy JM: Development of a new melanoma model in C57BL/6 mice. Cancer Res 42: 3157–3163, 1982

    Google Scholar 

  15. Kripke ML: Speculations on the role of ultraviolet radiation in the development of malignant melanoma. J Natl Cancer Inst 63: 541–548, 1979

    Google Scholar 

  16. Goerttler K, Loehrke H, Hesse B, Pyerin WG: Tumor initiation by 7,12-dimethylbenz/a/anthracene in dermal melanocytes of hamster: inhibition through 7,8-benzoflavone. Carcinogenesis 3: 791–795, 1982

    Google Scholar 

  17. Pawlowski A, Lea PJ: Nevi and melanoma induced by chemical carcinogens in laboratory animals: similarities and differences with human lesions. J Cut Pathol 10: 81–110, 1983

    Google Scholar 

  18. McCullough B, Schaller J, Shadduck JA, Yohn DS: Induction of malignant melanomas associated with fibrosarcomas in gnotobiotic cats inoculated with Gardner-feline fibrosarcoma virus. J Natl Cancer Inst 48: 1893–1896, 1972

    Google Scholar 

  19. Shadduck JA, Albert DM, Niederkorn JY: Feline uveal melanomas induced with feline sarcoma virus: potential model of the human counterpart. J Natl Cancer Inst 67: 619–627, 1981

    Google Scholar 

  20. Lerner AB, Cage GW: Melanoma in horses. Yale J Biol Med 46: 646–649, 1974

    Google Scholar 

  21. Hook RRJr, Berkelhammer J, Oxenhandler RW: Animal model of human disease. Melanoma. Sinclair swine melanoma. Am J Pathol 108: 130–133, 1982

    Google Scholar 

  22. Vielkind J, Vielkind U: Melanoma formation in fish of the genus Xiphophorus: a genetically-based disorder in the determination and differentiation of a specific pigment cell. Can J Genet Cytol 24: 133–149, 1982

    Google Scholar 

  23. Ghelelovitch S: Effect of the inhibition of nucleic acids and protein synthesis upon the development of melanotic tumors in Drosophila. Expl Cell Biol 51: 210–216, 1983

    Google Scholar 

  24. McCormick W, Wallace I, Kirk J, Dinsmore S, Allen I: The establishment and characterization of a cell line and mouse xenografts from a human malignant melanoma. Br J Exp Path 64: 103–115, 1983

    Google Scholar 

  25. Bomirski A: Biological properties of transplantable melanomas in the Syrian hamster during 16 years of maintenance by serial passages. Dissertation, Medical School, Gdansk, 1977

  26. Bomirski A, Dominiczak T, Nowinska L: Spontaneous transplantable melanoma in the golden hamster (Mesocricetus auratus). Acta Un Int Cancer 18: 178–180, 1962

    Google Scholar 

  27. Bomirski A, Nowinska L, Pautsch F: The tyrosinase-positive amelanotic melanoma in the golden hamster. In: Della Porta G, Muhlbock O (eds) Structure and Control of the Melanocyte. Springer, Berlin, Heidelberg, New York, 1966, pp 252–259

    Google Scholar 

  28. Słominski A, Bomirski A: Phenotypic changes of Ab hamster melanoma during long-term culture. Anticancer Res 5: 403–410, 1985

    Google Scholar 

  29. Bomirski A, Wrzołkowa T, Arendarczyk M, Bomirska M, Kuklinska E, Słominski A, Moellmann G: Pathology and ultrastructural characteristics of a hypomelanotic variant of transplantable hamster melanoma with elevated tyrosinase activity. J Invest Dermatol 89: 469–473, 1987

    Google Scholar 

  30. Bomirski A, Wrzołkowa T, Arendarczyk M, Bomirska M: An origin, pathologic properties and ultrastructure of a new variant of transplantable melanoma in hamsters. Yale J Biol Med 57: 338, 1984

    Google Scholar 

  31. Słominski A, Bomirski A, Scisłowski PWD, Arendarczyk M: Effect of tissue selection on melanization of MI hamster melanoma. Neoplasma 31: 551–556, 1984

    Google Scholar 

  32. Moyer FH: Genetic effect on melanosome fine structure and ontogency in normal and malignant cells. Ann NY Acad Sci 100: 584–606, 1963

    Google Scholar 

  33. Garcia H, Baroni C, Rappaport HJ: Transplantable tumors of the Syrian golden hamster. J Natl Cancer Inst 27: 1323–1339, 1961

    Google Scholar 

  34. Billingham RE, Sawchuck GH, Silvers WK: Studies on the histocompatibility genes of the Syrian hamster. Proc Natl Acad Sci USA 46: 1079–1090, 1960

    Google Scholar 

  35. Słominski A, Kobzej D: Transplantability of Bomirski melanomas in Syrian hamsters. Neoplasma 30: 51–56, 1983

    Google Scholar 

  36. Steel GG, Adams K, Barret JC: Analysis of the cell population kinetics of transplanted tumours of widely-differing growth rate. Br J Cancer 20: 784–800, 1966

    Google Scholar 

  37. Leibovici J: Serial passage of tumors in mice in the study of tumor progression and testing of antineoplastic drugs. Cancer Res 44: 1981–1984, 1984

    Google Scholar 

  38. Fodstad Ø, Rofstafd EK, Tveit KM, Pihl A: Spontaneous alteration in growth rates of two human melanoma xenografts. Concurrent changes in chemosensitivity. Eur J Cancer Clin Oncol 19: 1175–1178, 1983

    Google Scholar 

  39. Nowell PC: Tumor progression and clonal evolution: the role of genetic instability. In: German J (ed) Chromosome Mutation and Neoplasia. Alan R. Liss Inc., New York, 1983, pp 413–432

    Google Scholar 

  40. Stackpole CW: Generation of phenotypic diversity in the B16 mouse melanoma relative to spontaneous metastasis. Cancer Res 43: 3057–3065, 1983

    Google Scholar 

  41. Poste G, Greig A: The experimental and clinical implications of cellular heterogeneity in malignant tumors. J Cancer Res Clin Oncol 106: 159–170, 1983

    Google Scholar 

  42. Heppner GH: Tumor heterogeneity. Cancer Res 44: 2259–2265, 1984

    Google Scholar 

  43. Nicolson GL: Generation of phenotypic diversity and progression in metastatic tumor cells. Cancer Met Rev 3: 25–42, 1984

    Google Scholar 

  44. Hill RP, Chambers AF, Ling V, Harris JF: Dynamic heterogeneity rapid generation of metastatic variants in mouse B16 melanoma cells. Science 224: 998–1001, 1984

    Google Scholar 

  45. Brodt P, Parhar P, Sankar P, Lala PK: Studies on clonal heterogeneity in two spontaneously metastasizing mammary carcinomas of recent origin. Int J Cancer 35: 265–273, 1985

    Google Scholar 

  46. Herlyn M, Thurin J, Balaban G, Bennicelli JL, Herlyn D, Elder DE, Bondi E, Guerry D, Nowell P, Clark WH, Koprowski H: Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res 45: 5670–5676, 1985

    Google Scholar 

  47. Isaacs J: Mechanisms for and implications of the development of heterogeneity of androgen sensitivity in prostatic cancer. In: Owens AH Jr, Coffey DS, Baylin SB (eds) Tumor Cell Heterogeneity. Origins and Implications. Academic Press, New York, London, 1982, pp 99–111

    Google Scholar 

  48. Sidebottom E, Clark SR: Cell fusion segregates progressive growth from metastasis. Br J Cancer 47: 399–406, 1983

    Google Scholar 

  49. Weiss L, Ward PM: Cell detachment and metastasis. Cancer Met Rev 2: 111–127, 1983

    Google Scholar 

  50. Rieber M, Rieber MS: Metastatic potential correlates with cell-surface protein alterations in B16 melanoma variants. Nature 293: 74–76, 1981

    Google Scholar 

  51. Sloane BF, Dunn JR, Honn KV: Lysosomal cathepsin B: correlation with metastatic potential. Science 212: 1151–1153, 1981

    Google Scholar 

  52. DelaMonte SM, Moore GW, Hutchins GM: Patterned distribution of metastases from malignant melanoma in humans. Cancer Res 43: 3427–3433, 1983

    Google Scholar 

  53. Nicolson GL: Cell surface molecules and tumor metastasis. Regulation of metastatic phenotypic diversity. Exp Cell Res 150: 3–22, 1984

    Google Scholar 

  54. Sugarbaker EV: The characteristics of metastasis in man. Am J Pathol 97: 623–632, 1979

    Google Scholar 

  55. Hart IR, Fidler IJ: Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res 40: 2281–2287, 1980

    Google Scholar 

  56. Kozłowska K, Bomirski A, Zurawska-Czupa B: Surface glycoprotein components in isolated melanotic melanoma cells in the golden hamster. Arch Immunol Ther Exp 25: 107–110, 1977

    Google Scholar 

  57. Kozłowska K, Zurawska-Czupa B: Heterogeneity of the surface material in isolated cells of transplantable hamster melanomas. Cancer Res 43: 1168–1171, 1983

    Google Scholar 

  58. Hyrc K, Kapiszewska M, Cieszka K: Differences in the electrophoretic mobilities of pigmented and non-pigmented melanoma cells. In: Schütt W, Klinkmann H (eds) Cell Electrophoresis. Walter de Gruyter & Co., Berlin-New York, 1985, pp 451–457

    Google Scholar 

  59. Bomirski A: Studies on immunization of golden hamsters to transplantable melanomas. Arch Immunol Ther Exp 18: 481–490, 1970

    Google Scholar 

  60. Kozłowska K, Zurawska-Czupa B, Kostulak A: Studies on antigenicity and immunogenicity of transplantable melanoma in hamster by using migration inhibition test. Arch Immunol Ther Exp. 26: 445–447, 1978

    Google Scholar 

  61. Kozłowska K, Zurawska-Czupa B, Mierzewski P, Kostula A: Use of the macrophage migration inhibition test to evaluate antigenic differences in golden hamster transplantable melanomas. Int J Cancer 26: 211–215, 1980

    Google Scholar 

  62. Zbytniewski Z: Aktywnose arylosulfatazy w prezeszczepialnych czerniakach melanotycznych i amelanotycznych u chomika zlocistego (Mesocricetus auratus Waterhouse). Nowotwory 19: 165–176, 1969

    Google Scholar 

  63. Zbytniewski Z, Drewa G: Proteolytic activity of the homogenates of transplantable melanotic and amelanotic melanoma in golden hamster (Mesocricetus auratus, Waterhouse). Pol Med J 11: 397–404, 1972

    Google Scholar 

  64. Watts KP, Fairchild RG, Slatkin DN, Greenberg D, Packer S, Atkins HL, Hannon SJ: Melanin content of hamster tissues, human tissues, and various melanomas. Cancer Res 41: 467–472, 1981

    Google Scholar 

  65. Ito S, Jimbow K: Quantitative analysis of eumelanin and pheomelanin in hair and melanomas. In: Jimbow K (ed) Structure and Function of Melanin Vol. 1. Fuji Printing Co. Inc., Sapporo, 1984, pp 18–25

    Google Scholar 

  66. Bomirski A, Zawrocka-Wrzoŀkowa T, Pautsch F: Electron microscopic studies on transplantable melanotic and amelanotic melanomas in hamsters. Arch Derm Forsch 246: 284–298, 1973

    Google Scholar 

  67. Bomirski A, Wrzoŀkowa T: Ultrastructural tyrosinase reaction in hamster melanoma. Ann Med Sect Pol Acad Sci 20: 59–60, 1975

    Google Scholar 

  68. Bomirski A, Wrzoŀkowa T: Badania ultrastrukturalne nad wystepowaniem tyrozynazy w przeszczepialnym czerniaku amelanotycznym u chomika syryjskiego. Przeg Derm 63: 11–18, 1976

    Google Scholar 

  69. Takahashi H, Horikoshi T, Jimbow K: Fine structural characterization of melanosomes in dysplastic nevi. Cancer 56: 111–123, 1985

    Google Scholar 

  70. Clark WH Jr, Heggeler B, Bretton R: Electron microscopic observations of human cutaneous melanomas correlated with their biologic behavior. In: Bligh VCN (ed) Melanoma and Skin Cancer. Government Printer, New South Wales, 1972, pp 121–141

    Google Scholar 

  71. Hunter JAA, Zaynoun S, Paterson WD, Bleehen SS, Mackie R, Cochran AJ: Cellular fine structure in the invasive nodules of different histogenetic types of malignant melanoma. Br J Dermatol 98: 255–272, 1978

    Google Scholar 

  72. Clark WH Jr, Bretton R: A comparative fine structural study of melanogenesis in normal human epidermal melanocytes and in certain human malignant melanoma cells. In: Hetwig EB, Mostofi FK (eds) The Skin. Int Acad Pathol. Monograph. Williams and Wilkins Co., Baltimore, 1971, pp 197–214

    Google Scholar 

  73. Foa C, Aubert C: Ultrastructural comparison between cultured and tumor cells of human malignant melanoma. Cancer Res 37: 3957–3963, 1977

    Google Scholar 

  74. Tilgen W, Dzarlieva RT, Breitkreutz D, Hennes B, Engster M, Matzku S, Fusenig NE: Heterogeneity of human malignant melanoma cells in vivo and in vitro: role of experimental systems. In: Bagnara J, Klaus SN, Paul E, Schartl M (eds) Pigment Cell. Biological, Molecular and Clinical Aspects of Pigmentation. University of Tokyo Press, Tokyo, 1985, pp 435–437

    Google Scholar 

  75. Jimbow K, Miyake Y, Homma K, Yasuda K, Izumi Y, Tsutsumi A, Ito S: Characterization of melanogenesis and morphogenesis of melanosomes by physicochemical properties of melanin and melanosomes in malignant melanoma. Cancer Res 44: 1128–1134, 1984

    Google Scholar 

  76. Stanka P, Kinzel V, Mohr U: Elektronenmikroskopische Untersuchung über die Prämelanosomenentstehung an Melanomzellen in vitro. Virchows Arch Abpt B Zellpath 2: 91–102, 1969

    Google Scholar 

  77. Rappaport H, Nakai T, Swift H: The fine structure of normal and neoplastic melanocytes in the Syrian hamster, with particular reference to carcinogen-induced melanotic tumors. J Cell Biol 16: 171–186, 1963

    Google Scholar 

  78. Jimbow K, Takeuchi T: Ultrastructural comparison of pheo- and eumelanogenesis in animals. Pigment Cell 4: 308–317, 1979

    Google Scholar 

  79. Bomirski A, Sŀominski A: Ultrastructural aspects of melanization of hamster Ab amelanotic melanoma in primary cell culture. Acta Dermatol Venereol (Stockh) 66: 520–523, 1986

    Google Scholar 

  80. Jimbow K, Oikawa O, Sugiyama S, Takeuchi T: Comparison of eumelanogenesis and pheomelanogenesis in retinal and follicular melanocytes, role of vesiculo-globular bodies in melanosome differentiation. J Invest Dermatol 73: 278–284, 1979

    Google Scholar 

  81. Arstilla AU, Trump BF: Autophagocytosis: origin of membrane and hydrolytic enzymes. Virchows Arch Abpt B Zellpath 2: 85–90, 1969

    Google Scholar 

  82. Nakagawa H, Hori Y, Fitzpatrick TB: The nature and origin of the melanin macroglobule. In: Bagnara J, Klaus SN, Paul E, Schartl M (eds) Pigment Cell. Biological, Molecular and Clinical Aspects of Pigmentation. University of Tokyo Press, Tokyo, 1985, pp 25–34

    Google Scholar 

  83. Foa C, Aubert C: Cellular localization of tyrosinase in human malignant melanoma cell lines. J Invest Dermatol 68: 369–378, 1977

    Google Scholar 

  84. Rodriguez HA, McGavran MH: A modified dopa reaction for the diagnosis and investigation of pigment cells. Amer J Clin Pathol 52: 219–227, 1969

    Google Scholar 

  85. Shieh S-J, Bowers RR, Hadfield TL: An ultrastructural study of albinistic B16 melanoma cells. Exp Molec Pathol 35: 57–64, 1981

    Google Scholar 

  86. Voulot C, Ortonne JP, Benedetto JP, Khatchadourian C, Prota G: Amelanotic changes in B16 melanoma after transplantation to ‘yellow’ Ay/a mice. Arch Dermatol Res 273: 51–60, 1982

    Google Scholar 

  87. Pawelek J, Sansone M, Morowitz J, Moellmann G, Godawska E: Genetic control of melanization: isolation and analysis of amelanotic variants from cultured melanotic melanoma cells. Proc Natl Acad Sci USA 71: 35–84, 1974

    Google Scholar 

  88. Hu F, Swedo JL, Watson JHL: Cytological variations of B16 melanoma cells. Adv Biol Skin 8: 549–579, 1967

    Google Scholar 

  89. Rosenberg IC, Assimacoupoulos C, Lober P, Rosenberg SA, Zimmerman B: The malignant melanoma of hamsters. I. Pathologic characteristics of a transplanted melanotic and amelanotic tumor. Cancer Res 21: 627–631, 1961

    Google Scholar 

  90. Wrathall JR, Oliver C, Silagi S, Essner E: Suppression of pigmentation in mouse melanoma cells by 5-bromodeoxyuridine. Effects on tyrosinase activity and melanosome formation. J Cell Biol 57: 406–423, 1973

    Google Scholar 

  91. Dernaŀowicz E, Trojanowski J, Bomirski A, Dominiczak T: Tyrosinase activity in the amelanotic melanoma in golden hamsters. Nature 215: 188–189, 1967

    Google Scholar 

  92. Sŀominski A, Scislowski PWD, Bomirski A: Biochemical characterization of three hamster melanoma variants. I. Tyrosinase activity and melanin content. Int J Biochem 16: 323–326, 1984

    Google Scholar 

  93. Scislowski PWD, Sŀominski A, Bomirski A: Biochemical characterization of three hamster melanoma variants. II. Glycolysis and oxygen consumption. Int J Biochem 16: 327–331, 1984

    Google Scholar 

  94. Scislowski PWD, Sŀominski A, Bomirski A, Zydowo M: Metabolic characterization of three hamster melanoma variants. Neoplasma 32: 593–598, 1985

    Google Scholar 

  95. Scisŀowski PWD, Sŀominski A: The role of NADP-dependent dehydrogenases in hydroxylation of tyrosine in hamster melanoma. Neoplasma 30: 239–243, 1983

    Google Scholar 

  96. Weinhouse S: Oxidative metabolism of neoplastic tissues. Adv Cancer Res 3: 269–285, 1955

    Google Scholar 

  97. Cooper JA, Reiss NA, Schwartz RJ, Hunter J: Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus. Nature 302: 18–223, 1983

    Google Scholar 

  98. Warburg O: On the origin of cancer cells. Science 123: 309–314, 1956

    Google Scholar 

  99. Eigenbrodt E, Glossmann H: Glycolysis—one of the keys to cancer? Trends Pharmac Sci 1: 240–245, 1980

    Google Scholar 

  100. Racker E: Why do tumour cells have a high aerobic glycolysis? J Cell Physiol 89: 697–700, 1976

    Google Scholar 

  101. McKeehan WL: Glycolysis, glutaminolysis and cell proliferation. Cell Biol Int Rep 6: 635–649, 1982

    Google Scholar 

  102. Weiss DW: Tumor origin, progression, immunogenicity, and immunotherapy. Transplant Proc 16: 528–533, 1984

    Google Scholar 

  103. Kozlowska K, Bomirski A, Zurawska-Czupa B: Comparison of the surface glycoprotein components in the isolated cells of hamster melanotic and amelanotic melanomas. Arch Derm Res 256: 197–203, 1976

    Google Scholar 

  104. Hakomori S: Aberrant glycosylation in cancer cell membranes as focused on glycolipids: Overview and perspectives. Cancer Res 45: 2405–2414, 1985

    Google Scholar 

  105. Smets LA, VanBeek WP: Carbohydrates of the tumor cell surface. Biochim Biophys Acta 738: 237–249, 1984

    Google Scholar 

  106. Feizi T: Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 314: 53–57, 1985

    Google Scholar 

  107. Crumpton MJ: Glycoproteins in relation to cell differentiation and malignancy. In: Akoyumoglou G (ed) Cell Function and Differentiation Part A. Progress in Clinical and Biological Research, vol 102. Alan R. Liss, Inc., New York, 1982, pp 359–370

    Google Scholar 

  108. Mishima Y, Imokawa G: Role of glycosylation in initial melanogenesis: post-inhibition dynamics. In: Bagnara J, Klaus SN, Paul E, Schartl M (eds) Pigment Cell. Biological, Molecular and Clinical Aspects of Pigmentation. University of Tokyo Press, Tokyo, 1985, pp 17–30

    Google Scholar 

  109. Limon J, Bomirski A, Babinska M, Beil B: Cytogenetical analysis of hamster transplantable amelanotic tumours. Scripta Medica (Brno) 51: 445–446, 1978

    Google Scholar 

  110. Limon J, Gibas Z, Babinska M, Bomirski A, Beil B: Cytogenetic analysis of transplantable hamster and mouse melanomas of different melanin contents and growth rate. Yale J Biol Med 57: 387, 1984

    Google Scholar 

  111. Limon J, Gibas Z, Babinska M, Beil B, Bomirski A, Mierzewski P, Sandberg AA: Chromosome changes associated with spontaneous phenotypic variation of transplantable melanoma. Cancer Genet Cytogenet 25: 123–129, 1987

    Google Scholar 

  112. Feinberg AP, Coffey DS: The concept of DNA rearrangement in carcinogenesis and development of tumor cell heterogeneity. In: Owens Jr AH, Coffey DS, Baylin SB (eds) Tumor Cell Heterogeneity, Academic Press, New York-London, 1982, pp 469–494

    Google Scholar 

  113. Sandberg AA: A chromosomal hypothesis of oncogenesis. Cancer Genet Cytogenet 8: 277–285, 1983

    Google Scholar 

  114. Klein G, Klein E: Evolution of tumours and the impact of molecular oncology. Nature 315: 190–195, 1985

    Google Scholar 

  115. Pedersen-Bjergaard J, Andersson P, Philip P: Possible pathogenetic significance of specific chromosome abnormalities and activated proto-oncogenes in malignant diseases of man. Scand J Haematol 36: 127–137, 1986

    Google Scholar 

  116. Zimmering AK, Mansell PWA, Dietrich RS, O'Neil C: Morphological, cytogenetic and ultrastructural observations on three lines of human melanoma kept in long-term culture. Pigment Cell 2: 79–93, 1976

    Google Scholar 

  117. Trent JM, Rosenfeld SB, Meyskens FL: Chromosome 6q involvement in human malignant melanoma. Cancer Genet Cytogenet 9: 177–180, 1983

    Google Scholar 

  118. Pathak S, Drwinga HL, Hsu TC: Involvement of chromosome 6 in rearrangements in human malignant melanoma cell lines. Cytogenet Cell Genet 36: 573–579, 1983

    Google Scholar 

  119. DeSalum SB, Slavutsky I, Besuschio S, Pavlovsky AA: Homogenously staining regions (HSR) in a human malignant melanoma. Cancer Genet Cytogenet 11: 53–60, 1984

    Google Scholar 

  120. Sŀominski A: Rapid melanization of Bomirski amelanotic melanoma cells in cell culture. Biosci Rep 3: 189–194, 1983

    Google Scholar 

  121. Sŀominski A: Some properties of Bomirski Ab amelanotic melanoma cells, which underwent spontaneous melanization in primary cell culture. Growth kinetics, cell morphology, melanin content and tumorigenicity. J Cancer Res Clin Oncol 109: 29–37, 1985

    Google Scholar 

  122. Sŀominski A, Scisŀowski PWD, Bomirski A: Tyrosinase activity in primary cell culture of amelanotic melanoma cells. Biosci Rep 3: 1027–1034, 1983

    Google Scholar 

  123. Sŀominski A, Bomirski A, Scisŀowski PWD, Zoŀnierowicz S: Effects of actinomycin D and cycloheximide on the increase in tyrosinase activity of hamster amelanotic melanoma cells in vitro. Biosci Rep 4: 1059–1064, 1984

    Google Scholar 

  124. Halaban R, Pomerantz SH, Marshall S, Lambert DT, Lerner AB: Regulation of tyrosinase in human melanocytes grown in culture. J Cell Biol 97: 480–488, 1983

    Google Scholar 

  125. Korner A, Pawelek J: Activation of melanoma tyrosinase by a cyclic AMP-dependent protein kinase in a cell-free system. Nature 267: 444–447, 1977

    Google Scholar 

  126. Ossowski I, Reich E: Changes in malignant phenotype of a human carcinoma conditioned by growth environment. Cell 33: 323–333, 1983

    Google Scholar 

  127. Freshney RI: Induction of differentiation in neoplastic cells. Anticancer Res 5: 111–130, 1985

    Google Scholar 

  128. Scott RE, Florine DL: Cell cycle models for the aberrant coupling of growth arrest and differentiation in hyperplasia, metaplasia, and neoplasia. Am J Pathol 107: 342–348, 1982

    Google Scholar 

  129. Bloch A: Induced cell differentiation in cancer therapy. Cancer Treat Rep 68: 199–205, 1984

    Google Scholar 

  130. Logan A, Weatherhead B: Post-tyrosinase inhibition of melanogenesis by melatonin in hair follicles in vitro. J Invest Dermatol 74: 47–50, 1980

    Google Scholar 

  131. Campbell S, Bard JBL: The acellular stroma of the chick cornea inhibits melanogenesis of the neural-crest-derived cells that colonize it. J Embryol Exp Morph 86: 143–154, 1985

    Google Scholar 

  132. Sachs L: Cell differentiation and bypassing of genetic defects in the suppression of malignancy. Cancer Res 47: 1981–1986, 1987

    Google Scholar 

  133. Metcalf D, Nicola NA: Autoinduction of differentiation in WEHI-3B leukemia cells. Int J Cancer 30: 773–780, 1982

    Google Scholar 

  134. Damjanov I, Andrews PW: Ultrastructural differentiation of a clonal human embryonal carcinoma cell line in vitro. Cancer Res 43: 2190–2198, 1983

    Google Scholar 

  135. Pinto M, Robine-Leon S, Appay MD, Kedinger M, Triadou M, Dussaulx E, Lacroix B, Simon-Assmann P, Haffen K, Fough J, Zweibaum A: Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell 47: 323–330, 1983

    Google Scholar 

  136. Mint B, Fleischman RA: Teratocarcinomas and other neoplasms as developmental defects in gene expression. Adv Cancer Res 34: 211–278, 1981

    Google Scholar 

  137. Yamaguchi Y, Kluge N, Ostertag W, Furusawa M: Erythroid differentiation and commitment in rat erythroleukemia cells with hypertonic culture conditions. Proc Natl Acad Sci USA 78: 2325–2329, 1981

    Google Scholar 

  138. peassano S, McNab A, Rovera G: Growth and differentiation of human and murine erythroleukemia cell lines in serum-free synthetic medium. Cancer Res 41: 3592–3596, 1981

    Google Scholar 

  139. Aubert C, Chirieceanu E, Foa C, Delain E: Ultrastructure of spontaneously differentiated human malignant melanocytes cultured from primary tumors. J Natl Cancer Inst 58: 29–35, 1977

    Google Scholar 

  140. Kuhn C, Vielkind U, Anders F: Cell cultures derived from embryos and melanoma of poeciliid fish. In vitro 15: 537–544, 1979

    Google Scholar 

  141. Aubert C, Rouge F, Galindo JR: Differentiation and tumorigenicity of human malignant melanocytes in relation to their culture conditions. J Natl Cancer Inst 72: 3–12, 1984

    Google Scholar 

  142. Wong G, Pawelek J: Melanocyte-stimulating hormone promotes activation of pre-existing tyrosinase molecules in Cloudman S91 melanoma cells. Nature 255: 644–646, 1975

    Google Scholar 

  143. Hu F, Mah K, Teramura DJ: Electron microscopic and cytochemical observations of theophylline and melanocyte-stimulating hormone effects on melanoma cells in culture. Cancer Res 42: 2786–2791, 1982

    Google Scholar 

  144. Van Tieghem N, Doyen A, Legros F, Temmerman A, Vercammen-Grandjean A, Frühling J, Lejeune FJ: Differentiation and retroviral markers in alpha-MSH-treated human melanoma cell lines. Arch Int Physiol Biochem 88: 301, 1980

    Google Scholar 

  145. Kreider JW, Rosenthal M, Lengle N: Cyclic adenosine 3′, 5′-monophosphate in the control of melanoma cell replication and differentiation. J Natl Cancer Inst 50: 555–558, 1973

    Google Scholar 

  146. Kreider JW, Wade DR, Rosenthal M, Densley T: Maturation and differentiation of B16 melanoma cells induced by theophylline treatment. J Natl Cancer Inst 54: 1457–1467, 1975

    Google Scholar 

  147. Hu F: Pigment cell differentiation in vitro. In: Bagnara J, Klaus SN, Paul E, Schartl M (eds) Pigment Cell. Biological, Molecular and Clinical Aspects of Pigmentation. University of Tokyo Press, Tokyo, 1985, pp 369–376

    Google Scholar 

  148. Silagi S: Control of pigment production in mouse melanoma cells in vitro. Evocation and maintenance. J Cell Biol 43: 260–270, 1969

    Google Scholar 

  149. Raz A: B16 melanoma cell variants: irreversible inhibition of growth and induction of morphologic differentiation by anthracycline antibiotics. J Natl Cancer Inst 68: 629–638, 1982

    Google Scholar 

  150. Huberman E, Weeks C, Solanki V, Callahan M, Slaga T: Cell differentiation, alterations in polyamine levels, and specific binding of phorbol diesters in cultured human cells. In: Hecker E (ed) Carcinogenesis, Vol. 7, Raven Press, New York, 1982, pp 405–416

    Google Scholar 

  151. Iwata K, Inui N: Stimulation of melanogenesis in melanoma cells growing in serum-free medium by fetal bovine serum and dimethylsulfoxide. Proc Jap Acad 56B: 562–567, 1980

    Google Scholar 

  152. Ziegler-Heibrock HWL, Munker R, Johnson J, Petersmann I, Schmoekel C, Riethmüller G: In vitro differentiation of human melanoma cells analyzed with monoclonal antibodies. Cancer Res 45: 1344–1350, 1985

    Google Scholar 

  153. Hoal E, Wilson EL, Dowdle EB: Variable effects of retinoids on two pigmenting human melanoma cell lines. Cancer Res 42: 5191–5195, 1982

    Google Scholar 

  154. Giotta GJ, Smith JR, Nicolson GL: Guanosine 5′-triphosphate inhibits growth and stimulates differentiated functions in B16 melanoma cells. Exp Cell Res 112: 385–393, 1978

    Google Scholar 

  155. Sheridan JW, Simmons RJ: Tritiated-thymidine-induced increased DNA content and irreversible differentiation in a human melanoma cell line. Br J Exp Path 62: 289–296, 1981

    Google Scholar 

  156. Käpyaho K, Jänne J: Stimulation of melanotic expression in murine melanoma cells exposed to polyamine antimetabolites. Biochem Biophys Res Commun 113: 18–23, 1983

    Google Scholar 

  157. Slominski A, Kuklinska E, Moellmann G, Pawelek J: Positive regulation of melanogenesis by L-tyrosine and L-dopa. J Invest Dermatol 88: 519, 1987

    Google Scholar 

  158. Slominski A, Moellmann G, Kuklinska E, Bomirski A, Pawelek J: Positive regulation of melanin pigmentation by two key substrates of the melanogenic pathway: L-tyrosine and L-dopa. J. Cell Sci. (in press)

  159. Glass RE: In: Glass RE (ed) Gene Function: E Coli and Its Heritable Elements. Univ California Press, Great Britain, 1982

    Google Scholar 

  160. Hach P, Duchon J, Boronavsky J: Ultrastructural and biochemical characteristics of isolated melanosomes. Folia Morph 25: 407–410, 1977

    Google Scholar 

  161. Borovansky J, Pavel S, Duchon J, Vultrein K: Incorporation of L-3,4-dihydroxy/2-14C/phenylalanine into hamster melanoma melanosomes. FEBS Lett 104: 291–293, 1979

    Google Scholar 

  162. Vendralova E, Duchon J: Comparison of lipids between tumor and normal hamster melanosomes. Neoplasma 30: 317–321, 1983

    Google Scholar 

  163. Vachtenheim J, Pavel S, Duchon J: Dopa oxidase activity and ceruloplasmin in the sera of hamsters with melanoma. Neoplasma 28: 59–65, 1981

    Google Scholar 

  164. Vachtenheim J, Duchon J, Matous B: An animal model for the survival of tyrosinase isoenzymes in serum. Arch Dermatol Res 276: 111–114, 1984

    Google Scholar 

  165. Horcicko J, Pavel S, Borovansky J, Duchon J: Excretion of melanogens and zinc during the growth of melanoma in hamsters. Neoplasma 26: 471–475, 1979

    Google Scholar 

  166. Lukiewicz S: Interference with endogenous radioprotectors as a method of radiosensitization. In: Modification of Radiosensitivity of Biological Systems, International Atomic Energy Agnecy, Vienna, 1976, pp 61–76

    Google Scholar 

  167. Lukiewicz S, Pilas B, Nowicka J, Cieszka K, Gurbiel R: Molecular and cellular basis of different radiosensitivity in pigmented and nonpigmented hamster melanoma cells. In: Seiji M (ed) Pigment Cell. Phenotypic Expression in Pigment Cells. University of Tokyo Press, Tokyo, 1981, pp 647–653

    Google Scholar 

  168. Pajak S, Subczynski W, Panz T, Lukiewicz S: Rate of oxygen consumption of hamster melanoma cells as a factor influencing their radioresistance. Folia Histochem Cytochem 18: 33–40, 1980

    Google Scholar 

  169. Slomianko-Winnicka M: Grupy sulfhydrylowe jako przypuszczalne inhibitory melanogenezy w amelanotycznym czerniaku chomika zlocistego (Mesocricetus auratus Waterhouse). Pat Pol 28: 91–100, 1977

    Google Scholar 

  170. Kozielec T, Slomianko-Winnicka M, Stawarczyk W: Unaczynienie czerniaka zlosliwego u chomika zlocistego. Ann Acad Med Stet 25: 239–246, 1979

    Google Scholar 

  171. Hunter JAA, Paterson WD, Fairley DJ: Human malignant melanoma. Melanosomal polymorphism and the ultrastructural dopa reaction. Br J Dermatol 98: 381–390, 1978

    Google Scholar 

  172. Ito M, Hashimoto K, Organisciak D: Ultrastructural, histochemical and biochemical studies of the melanin metabolism in pallid mouse eye. Curr Eye Res 2: 13–28, 1982/1983

    Google Scholar 

  173. Jimbow K, Kato M, Makita A, Chiba M: Characterization of tyrosinase and structural matrix proteins in melanosomes of mouse melanomas. Pigment Cell 5: 276–285, 1979

    Google Scholar 

  174. Klinger WG, Montague PM, Hearing VJ: Unique melanosomal proteins in murine melanoma. Pigment Cell 2: 1–12, 1976

    Google Scholar 

  175. Nicolson JM, Montague PM, Ekel TM, Hearing VJ: Isolation and partial characterization of aberrant melanosomal proteins from normal and malignant murine melanocytes. Pigment Cell 5: 266–275, 1979

    Google Scholar 

  176. Mazur MT, Katzenstein A-LA: Metastatic melanoma: the spectrum of ultrastructural morphology. Ultrastruc Pathol 1: 337–356, 1980

    Google Scholar 

  177. Cartens PHB, Kuhns JG: Ultrastructural confirmation of malignant melanoma. Ultrastruc Pathol 2: 147–149, 1981

    Google Scholar 

  178. Van Duinen SG, Ruitter DJ, Scheffer E: A staining procedure for melanin in semithin and ultrathin epoxy sections. Histopathol 7: 35–48, 1983

    Google Scholar 

  179. Persky B, MeyskensJr FL, Hendrix MJC: Diagnostic electron microscopy for amelanotic melanoma: correlation of patient biopsy, soft agar assay and xenograft. J Pathol 141: 17–27, 1983

    Google Scholar 

  180. Chen Y, Chavin W: Melanogenesis in human melanomas. Cancer Res 35: 606–612, 1975

    Google Scholar 

  181. Hoperskaya PA, Golubeva ON: The spatio-temporal framework of melanogenic induction in pigmented retinal cells of Xenopus laevis. J Embryol Exp Morphol 60: 173–188, 1980

    Google Scholar 

  182. Bluemink JG, Hoperskaya OA: Ultrastructural evidence for the absence of premelanosomes in eggs of the albino mutant (ap) of Xenopus laevis. Wilhelm Roux' Arch 177: 75–79, 1975

    Google Scholar 

  183. Brumbaugh JA, Wilkins LM, Moore JW: Genetic dissection of eumelanogenesis. Pigment Cell 4: 150–158, 1979

    Google Scholar 

  184. Foster M: Mammalian pigment genetics. Adv Genet 13: 311–339, 1965

    Google Scholar 

  185. Searle AG: Comparative Genetics of Coat Colour in Mammals. Academic Press, London, 1968

    Google Scholar 

  186. Arstilla AU, Jauregui HO, Chang J, Trump BF: Studies on cellular autophagocytosis. Relationship between heterophagy and autophagy in HeLa cells. Lab Invest 24: 162–174, 1971

    Google Scholar 

  187. Jimbow K, Szabo G, Fitzpatrick TB: Ultrastructural investigation of autophagocytosis of melanosomes and programmed death of melanocytes in white leghorn feathers: a study of morphogenetic events leading to hypomelanosis. Develop Biol 36: 8–23, 1974

    Google Scholar 

  188. Boissy RE, Smyth JR, Fite KV: Progressive cytologic changes during the development of delayed feather amelanosis and associated choroidal defects in the DAM chicken line. A vitiligo model. Am J Pathol 111: 197–212, 1983

    Google Scholar 

  189. Boissy RE, Moellmann G, Trainer AT, Smyth JR, Lerner AB: Delayed-amelanotic (Dam or Smyth) chicken melanocyte dysfunction in vivo and in vitro. J Invest Dermatol 86: 149–156, 1986

    Google Scholar 

  190. Ito M, Hashimoto K, Organisciak DT: Ultrastructural, histochemical, and biochemical studies of the melanin metabolism in eye and skin of pallid mice. J Invest Dermatol 78: 414–424, 1982

    Google Scholar 

  191. Pawelek JM, Korner A, Bergstrom A, Bolognia J: New regulators of melanin biosynthesis and the autodestruction of melanoma cells. Nature 286: 617–169, 1980

    Google Scholar 

  192. Parsons PG, Morrison LE: DNA damage and selective toxicity of dopa and ascorbate: copper in human melanoma cells. Cancer Res 42: 3783–3788, 1982

    Google Scholar 

  193. Fidler IJ, Hart IR: The development of biological diversity and metastatic potential in malignant neoplasms. Oncodevelop Biol Med 4: 161–176, 1982

    Google Scholar 

  194. Varani J, Lovett EJ: Phenotypic stability of murine tumor cells in vitro and in vivo. J Natl Cancer Inst 68: 957–962, 1982

    Google Scholar 

  195. Layton MG, Franks LM: Heterogeneity in a spontaneous mouse lung carcinoma: selection and characterization of stable metastatic variants. Br J Cancer 49: 415–421, 1984

    Google Scholar 

  196. Foulds L: Neoplastic Development. Academic Press, New York, 1975

    Google Scholar 

  197. Heppner GH: Tumor subpopulation interactions. In: Owens Jr AH, Coffey DS, Baylin SB (eds) Tumor Cell Heterogeneity. Academic Press, New York, 1982, pp 225–236

    Google Scholar 

  198. Iglehart JD, Ward EC, Thiel K, Huper G, Geler SS, Bolognesi DP: in vivo antigenic modification of tumor cells. I. Introduction of murine leukemia virus antigens on non-virus-producing murine sarcomas. J Natl Cancer Inst 67: 107–115, 1981

    Google Scholar 

  199. Iglehart JD, Weinhold KJ, Huper G, Thiel K, Bolognesi DP: In vivo antigenic modifications of tumor cells. III. Metastatic thymic lymphoma specifically infected by thymotropic retrovirus. J Natl Inst 67: 123–130, 1981

    Google Scholar 

  200. Clark WH Jr, Fromm L, Bernardino EA, Mihm MC: The histogenesis and biological behavior of primary human malignant melanomas of the skin. Cancer Res 29: 705–526, 1969

    Google Scholar 

  201. Clark WH Jr, Min BH, Kligman HL: The developmental biology of induced malignant melanoma in guinea pig and a comparison with other neoplastic systems. Cancer Res 36: 4079–4091, 1976

    Google Scholar 

  202. Dobzhansky T: On some fundamental concepts of Darwinian biology. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary Biology, Vol 2. North Holland Publishing Co, Amsterdam, 1968, pp 1–34

    Google Scholar 

  203. Gould SJ, Eldredge N: Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiol (Chicago) 3: 115–151, 1977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomirski, A., Słominski, A. & Bigda, J. The natural history of a family of transplantable melanomas in hamsters. Cancer Metast Rev 7, 95–118 (1988). https://doi.org/10.1007/BF00046481

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00046481

Key words

Navigation