Skip to main content
Log in

Studies on the distribution and metabolism of D-rhodoic acid in algae

  • Physiology
  • Published:
Hydrobiologia Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Beaulieu, C., L. J. Coulombe, R. L. Granger, B. Miki, C. Beauchamp, G. Rossignol & P. Dion, 1983. Characterization of opine-utilizing bacteria isolated from Québec. Phytoprotection 64: 61–68.

    Google Scholar 

  • Biemann, K., 1960. Structure of lysopine, a new amino-acid isolated from crown gall tissue. Biochim. biophys. Acta 40: 369–370.

    Google Scholar 

  • Bomhoff, G., P. M. Klapwjik, H. C. M. Kester, R. A. Schilperoort, J. P. Hernalsteens & J. Schell, 1976. Octopine and nopaline synthesis and breakdown genetically controlled by a plasmid of Agrobacterium. tumefaciens. Mol. gen. Genet. 145: 177–181.

    Google Scholar 

  • Ellington, W. R., 1979. Octopine dehydrogenase EC 1.5.1.11 in the basilar muscle of the sea anemone Metridium senile. Comp. Biochem. Physiol. 63: 349–354.

    Google Scholar 

  • Ellington, W. R., 1980. Partial purification and characterization of a broadly-specific octopine dehydrogenase from the tissues of the sea anemone, Bunodosoma cavernata (BOSC). Comp. Biochem. Physiol. 67B: 625–631.

    Google Scholar 

  • Fields, J. H. A., 1976. A dehydrogenase requiring alanine and pyruvate as substrates from oyster adductor muscle. Fed. Proc. Proc. 35: 1687.

    Google Scholar 

  • Fields, J. H. A. & P. W. Hochachka, 1975. Octopine dehydrogenase in squid mantle. Comp. Biochem. Physiol. 52. 158.

    Google Scholar 

  • Fields, J. H. A. & J. F. Quinn, 1981. Some theoretical considerations of cytosolic redox balance during anaerobiosis in marine invertebrates. J. theor. Biol. 88: 35–45.

    Google Scholar 

  • Gäde, G., 1980. Biological role of octopine formation in marine mollusks. Mar. Biol. Lett. 1: 121–136.

    Google Scholar 

  • Gäde, G. & K. H. Carlsson, 1984. Purification and characterisation of octopine dehydrogenase from the marine nemertean Cerebratulus lacteus (Anopla: Heteronemerta). Comparison with scallop octopine dehydrogenase. Mar. Biol. 79: 39–45.

    Google Scholar 

  • Gäde, G. & M. Grieshaber, 1975. Partial purification and properties of octopine dehydrogenase and the formation of octopine in Anodonta cygnea. J. comp. Physiol. 102: 149–158.

    Google Scholar 

  • Gelvin, S. B., M. F. Thomashow, J. C. McPherson, M. P. Gordon & E. W. Nester, 1982. Sizes and map positions of several plasmid-DNA-encoded transcripts in octopine-type crown gall tumors. Proc. natl. Acad. Sci. USA 79: 76–80.

    Google Scholar 

  • Grieshaber, M. & G. Gade, 1976. The biological role of octopine in the squid, Loligo vulgaris. J. comp. Physiol. 108: 225–232.

    Google Scholar 

  • Kemp, J. D., 1977. A new amino acid derivative present in crown gall tumor tissue. Biochem. biophys. Res. Comm. 74: 862–868.

    Google Scholar 

  • Kuriyama, M., 1961a. Ninhydrin reactive substances in marine algae---I. On the absorbable fraction on strong cationic ion exchange resin. Bull. Jpn. Soc. sci. Fish. 27: 689–693.

    Google Scholar 

  • Kuriyama, M., 1961b. Ninhydrin reactive substances in marine algae---II. On the non-absorbable fraction on strong cationic ion exchange resin. Bull. Jpn. Soc. sci. Fish. 27: 694–698.

    Google Scholar 

  • Kuriyama, M., 1961c. Ninhydrin reactive substances in marine algae---III. On the chemical structure of “unknown A” isolated from red algae. Bull. Jpn. Soc. sci. Fish. 27: 699–702.

    Google Scholar 

  • Lemmers, M., M. De Beuckeleer, M. Holsters, P. Zambryski, A. Depicker, J. P. Hernalsteens, M. Van Montagu & J. Schell, 1980. Internal organization, boundaries and integration of Ti-plasmid DNA in nopaline crown gall tumours. J. mol. Biol. 144: 353–376.

    Google Scholar 

  • Merlo, D. J. & E. W. Nester, 1977. Plasmids in avirulent strains of Agrobacterium. J. Bacteriol. 129: 76–80.

    Google Scholar 

  • Montoya, A. L., M.-D. Chilton, M. P. Gordon, D. Sciaky & E. W. Nester, 1977. Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells of plasmid genes. J. Bacteriol. 129: 101–107.

    Google Scholar 

  • Morizawa, K. 1927. Ueber die Extraktivstoffe von Oktopus oktopodia. Acta Sch. med. Univ. imp. Kioto 9: 285–298.

    Google Scholar 

  • Otten, L. A. B. M., D. Vreugdenhil & R. A. Schilperoort, 1977. Properties of lysopine dehydrogenase from crown gall tumour tissue. Biochim. biophys. Acta 485: 268–277.

    Google Scholar 

  • Rossignol, G. & P. Dion, 1984. Octopine, nopaline, and octopinic acid utilization in Pseudomonas. Can. J. Microbiol. 31: 68–74.

    Google Scholar 

  • Sangster, A. W., S. E. Thomas & N. L. Tingling, 1975. Fish attractants from marine invertebrates. Tetrahedron 31: 1135–1137.

    Google Scholar 

  • Sato, M., Y. Sato & Y. Tsuchiya, 1977a. Studies on the extractives of molluscs: I. α-Iminodipropionic acid isolated from the squid muscle extract. Bull. Jpn. Soc. sci. Fish. 43: 1077–1079 (in Japanese).

    Google Scholar 

  • Sato, M., Y. Sato & Y. Tsuchiya, 1977b. Studies on the extractives of molluscs: II. α-Iminodipropionic acid isolated from squid muscle extracts. Bull. Jpn. Soc. sci. Fish. 43: 1441–1443 (in Japanese).

    Google Scholar 

  • Sato, M., Y. Sato & Y. Tsuchiya, 1982. Distribution of meso-α-iminodipropionic acid and d-α-iminopropioacetic acid in a variety of aquatic organisms. Bull. Jpn. Soc. sci. Fish. 48: 1411–1414.

    Google Scholar 

  • Sato, M., N. Kanno & Y. Sato, 1985. Isolation of d-rhodoic acid from the abalone muscle. Bull. Jpn. Soc. sci. Fish. 51: 1681–1683.

    Google Scholar 

  • Sato, M., N. Kanno & Y. Sato, 1986. Biosynthesis of d-rhodoic acid in abalone. Bull. Jpn. Soc. sci. Fish. 52: 1025–1027.

    Google Scholar 

  • Sato, M. & G. Gäde, 1986. Rhodoic acid dehydrogenase: a novel amino acid-linked dehydrogenase from muscle tissue of Haliotis species. Naturwissenschaften 73: 207–208.

    Google Scholar 

  • Schrimsher, J. L. & K. B. Taylor, 1982. Octopine dehydrogenase from crown gall tumor and from Pecten maximum. J. biol. Chem. 257: 8953–8956.

    Google Scholar 

  • Thoai, N. V. & Y. Robin, 1959. Metabolism of guanidylated derivatives. Biochim. biophys. Acta 35: 446–453.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, M., Kanno, N. & Sato, Y. Studies on the distribution and metabolism of D-rhodoic acid in algae. Hydrobiologia 151, 457–462 (1987). https://doi.org/10.1007/BF00046167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00046167

Key words

Navigation