Skip to main content
Log in

Plane-stress crack-tip fields for power-law hardening orthotropic materials

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Plane stress mode I near-tip fields in orthotropic materials are examined. Plastic orthotropy is described by Hill's quadratic yield function and the strain hardening behavior is given by an appropriate generalization of a uniaxial tensile power-law stress-strain relation. Pronounced changes in the pattern of the angular variations of crack-tip fields have been observed with the degree of plastic orthotropy and the amount of strain hardening. Possible shapes and sizes of plastic zones (as inferred from effective stress contours) are presented for high- and low-hardening materials and a wide range of plastic orthotropy. The shape of the plastic zone for a particular case of plastic orthotropy agreed remarkably well with the zone of intense straining induced by an appropriately orientated crack within a graphite/epoxy laminate.

Résumé

On examine les champs de contraintes planes selon un mode I au voisinage de l'extrémité d'une fissure dans des matériaux orthotropes. L'orthotrope plastique est décrite par la fonction quadratique de plastification de Hill, et le comportement à l'écrouissage est donné par une généralisation adéquate d'une relation tensioncilatation de forme parabolique, sous traction mono-axiale. On a observé des modifications profondes dans l'aspect des variations angulaires des champs d'extrémité de fissure, selon le degré d'orthotropie plastique et infensité de l'écrouissage. Pour des matériaux très sujets ou peu sujets à l'écrouissage, et pour une large gamme d'orthotropies plastiques, on présente les formes et dimensions possibles des zones plastiques, telles qu'elles se deduisent des contours effectifs de contraintes. La forme de la zone plastique correspondant au cas particulier d'une orthotropie plastique s'accorde remarquablement bien à la zone de dilatation importante créée par une fissure d'orientation appropriée, dans une plaque de graphite-epoxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hill, Proceedings Royal Society London, Series A, 193 (1948) 281–291.

    Google Scholar 

  2. J.L. Bassani, International Journal of Mechanical Sciences 19 (1977) 651–660.

    Google Scholar 

  3. J.F.W. Bishop and R. Hill, Philosophical Magazine 7 (1951) 414–427.

    Google Scholar 

  4. R. Hill, Mathematical Proceedings Cambridge Philosophical Society 85 (1979) 179–191.

    Google Scholar 

  5. J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 16 (1968) 13–31.

    Google Scholar 

  6. J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 16 (1968) 337–347.

    Google Scholar 

  7. J.R. Rice and G.F. Rosengren, Journal of the Mechanics and Physics of Solids 16 (1968) 1–12.

    Google Scholar 

  8. C.F. Shih, “Elastic-Plastic Analysis of Combined Mode Crack Problems”, Ph.D. thesis, Harvard University (1973).

  9. C.F. Shih, Fracture Analysis, ASTM STP 560, American Society for Testing and Materials (1974) 187–210.

  10. K. Hayashi, Journal of the Mechanics and Physics of Solids 27 (1979) 163–174.

    Google Scholar 

  11. J. Pan and C.F. Shih, the Mechanics of Materials 5 (1986) 299–316.

    Google Scholar 

  12. J. Pan, Journal of the Mechanics and Physics of Solids (1986) 617–635.

  13. J.R. Rice, Transactions of the ASME, Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

  14. J.W. Hutchinson, Transactions of the ASME, Journal of Applied Mechanics 50 (1983) 1042–1051.

    Google Scholar 

  15. Y.T. Yeow, D.H. Morris and H.F. Brinson, Experimental Mechanics 19 (1979) 1–8.

    Google Scholar 

  16. C.F. Shih, “Tables of Hutchinson-Rice-Rosengren Singular Field Quantities”, MRL E-147, Material Research Laboratory, Brown University (1983).

  17. J.R. Rice, in Mechanics of Solids: The R. Hill Anniversary Volume, H.G. Hopkins and M.J. Sewell (eds.), Pergamon Press, Oxford (1982) 539–562.

    Google Scholar 

  18. J. pan, “Plane-Stress Crack-Tip Stress Field for Perfectly Plastic Orthotropic Materials”, submitted for publication.

  19. N. Levy, P.V. Marcal, W.J. Ostergren and J.R. Rice, International Journal of Fracture Mechanics 7 (1971) 143–156.

    Google Scholar 

  20. J.R. Rice and D.M. Tracey, in Numerical and Computer Methods in Structural Mechanics, S.J. Fenves et al., Academic Press, New York (1973).

    Google Scholar 

  21. D.M. Tracey, Transactions of the ASME, Journal of Engineering Materials and Technology 98 (1976) 146–151.

    Google Scholar 

  22. D.M. Parks, “Some Problems in Elastic-Plastic Finite Element Analysis of Cracks”, Ph.D. thesis, Brown University, Providence, RI (1975).

  23. C.F. Shih, Journal of the Mechanics and Physics of Solids 29 (1981) 305–326.

    Google Scholar 

  24. J.R. Rice, Mechanics of materials 3 (1984) 55–80.

    Google Scholar 

  25. J.R. Rice and R. Nikolic, Journal of the Mechanics and Physics of Solids 33 (1985) 595–622.

    Google Scholar 

  26. J.R. Rice, “Tensile Crack Tip Fields in Elastic-Ideally Plastic Crystals”, Report No. Mech-106, Division of Applied Sciences, Harvard University (July 1987) to be published.

  27. J.R. Rice, Journal of the Mechanics and Physics of Solids 21 (1973) 63–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, J., Fong Shih, C. Plane-stress crack-tip fields for power-law hardening orthotropic materials. Int J Fract 37, 171–195 (1988). https://doi.org/10.1007/BF00045862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00045862

Keywords

Navigation