Skip to main content
Log in

Elasticity, piezoelectricity and crystal lattice dynamics

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A review of some recent developments in the area between the dynamical theory of crystal lattices, in the harmonic approximation, and the classical, linear theories of elasticity and piezoelectricity.

Résumé

Un examen de quelques évolutions récentes dans le champ entre la théorie dynamique des réseaux cristallins (upproximation harmonique) et les théories classiques, linéaires, de l'élasticité et de la piézoélectricité.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cauchy, A. L., “Note sur l'équilibre et les mouvements vibratoires des corps solides”, Comptes Rendus Acad. Sci, Paris, 32, pp. 323–326 (1851).

    Google Scholar 

  2. Cosserat, E. et Cosserat, F., Théorie des corps déformables, A. Hermann et Fils, Paris (1909).

    Google Scholar 

  3. Voigt, W., Lehrbuch der Kristallphysik, B. G. Teubner, Leipzig (1910).

    Google Scholar 

  4. Gazis, D. C., Herman, R. and Wallis, R. F., “Surface elastic waves in cubic crystals”, Phys. Rev. 119, pp. 533–544 (1960).

    Google Scholar 

  5. Born, M. und Kármán, Th. v., “Über Schwingungen in Raumgitternrd, Physikal. Zeit. 13, pp. 297–309 (1912).

    Google Scholar 

  6. Mindlin, R. D., “Theories of elastic continua and crystal lattice theories”, in IUTAM Symposium Freudenstad-Stuttgart 1967, Mechanics of Generalized Continua, E., Kröner, editor, Springer-Verlag, Berlin pp. 312–320, (1968).

    Google Scholar 

  7. Salvadori, M. G. and Baron, M. L., Numerical Methods in Engineering, Prentice-Hall, New York, 2nd Edition, (1961).

    Google Scholar 

  8. Mindlin, R. D., “Lattice theory of shear modes of vibration and torsional equilibrium of simple-cubic crystal plates and bars”, Int. J. Solids Struct., 6, pp. 725–738 (1970).

    Google Scholar 

  9. Love, A. E. H., Some Problems of Geodynamics, Cambridge Univ. Press, London, p. 160, (1926).

    Google Scholar 

  10. Brady, K. J., “Lattice theory of face-shear and thickness-twist waves in face-centered cubic crystal plates”, Int. J. Solids Struct., 7, pp. 941–964 (1971).

    Google Scholar 

  11. Chung, Gong, “Lattice theory of face-shear and thickness-twist waves in body-centered cubic crystal plates”, Int. J. Solids Struct., 7, pp. 751–787 (1971).

    Google Scholar 

  12. Todhunter, I, and Pearson, J., A History of the Theory of Elasticity, Vol. 2, Part 1, p. 24, Cambridge Univ. Press, London, 1893.

    Google Scholar 

  13. Jolley, L. B. W., Summation of Series, Dover, New York, 2nd Ed. (1968), p. 80, No. 427.

    Google Scholar 

  14. Acro, E. L. and Kuvshinskii, E. V., “Fundamental equations of the theory of elastic media with rotationally interacting particles”, Fizika Tverdogo Tela, 2, pp. 1399–1409 (1960); Translation: Soviet Physics Solid State, 2, 1272–1281 (1961).

    Google Scholar 

  15. Grioli, G., “Elasticità asimmetrica”, Ann. di Mat. pura ed appl., Ser. IV, 50, pp. 1399–1409 (1960).

    Google Scholar 

  16. Rajagopal, E. S., “The existence of interfacial couples in infinitesimal elasticity”, Ann. der Physik, 6, pp. 192–201 (1960).

    Google Scholar 

  17. Truesdell, C. A. and Toupin, R. A., Encyclopedia of Physics, Vol. III/1, Springer-Verlag, Berlin (1960).

    Google Scholar 

  18. Krumhansl, J. A., “Generalized continuum field representations for lattice vibrations”, in Lattice Dynamics, R. F., Wallis, Editor, Pergamon Press, Oxford, 1964, pp. 627–634.

    Google Scholar 

  19. Toupin, R. A., “Elastic materials with couple-stresses”, Arch. Rat. Mech. Anal., 11. pp. 385–414 (1962).

    Google Scholar 

  20. Tosi, M. P., “IV. Surface energy”, in Solid State Physics, Vol. 16, Academic Press, New York (1964) pp. 92–107.

    Google Scholar 

  21. Germer, L. H., MacRae, A. U. and Hartman, C. D., “(110) Nickel surface”, J. Appl. Phys., 32, pp. 2432–2439 (1961).

    Google Scholar 

  22. Toupin, R. A. and Gazis, D. C., “Surface effects and initial stress in continuum and lattice models of elastic crystals”, in Lattice Dynamics, R. F., Wallis, Editor, Pergamon Press, Oxford, 1964, pp. 597–605.

    Google Scholar 

  23. Mindlin, R. D., “Second gradient of strain and surface-tension in linear elasticity”, Int. J. Solids Struct., 7, pp. 417–438 (1965).

    Google Scholar 

  24. Gazis, D. C. and Wallis, R. F., “Surface tension and surface modes in semi-infinite lattices”, Surface Science, 3, pp. 19–32 (1964).

    Google Scholar 

  25. Gazis, D. C. and Wallis, R. F., Private communication (1966).

  26. Ludwig, W., Recent Developments in Lattice Theory, Springer-Verlag, Berlin (1967).

    Google Scholar 

  27. Cosserat, E. et Cosserat, F., Théorie des corps déformable, A. Hermann et Fils, Paris (1909).

    Google Scholar 

  28. Schaefer, H., “Versuch einer Elastizitatstheorie des Zweidimensionalen ebenen Cosserat-Kontinuums”, Miszellaneen der Angewandten Mechanik, pp. 277–292, Akademie-Verlag, Berlin, (1962).

    Google Scholar 

  29. Eringen, A. C., “Linear theory of micropolar elasticity”, J. Math. Mech., 15, pp. 909–924 (1966).

    Google Scholar 

  30. Kuvshinskii, E. V. and Aero, E. L., “Continuum theory of asymmetric elasticity”, Fizika tverdogo tela, 5, pp. 2591–2598 (1963); Translation: Soviet Physics Solid State, 5, pp. 1892–1897 (1964).

    Google Scholar 

  31. Aero, E. L. and Kurshinkskii, E. V., “Continuum theory of asymmetric elasticity. Equilibrium of an isotropic body”, Fizika tverdogo tela, 6, pp. 2689–2699 (1964); Translation: Soviet Physics Solid State, 6, pp. 2141–2148 (1965).

    Google Scholar 

  32. Neuber, H., “On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua”, Proc. 11th Int. Cong. Appl. Mech. pp. 153–158, Springer-Verlag, Berlin (1965).

    Google Scholar 

  33. Mindlin, R. D., “Stress functions for a Cosserat continuum”, Int. J. Solids Struct., 1, pp. 265–271 (1965).

    Google Scholar 

  34. Cowin, S. C., “Stress functions for Cosserat elasticity”, Int. J. Solids Struct., 6, pp. 389–398 (1970).

    Google Scholar 

  35. Cowin, S. C., “An incorrect inequality in micropolar elasticity theory”, Zeit. f. Ang. Math. u. Physik, 21, pp. 494–497 (1970).

    Google Scholar 

  36. Askar, A., “Molecular crystals and the polar theories of the continua. Experimental values of material cocfficients for KNO3”, Int. J. Enging. Sci., 10, pp. 293–300 (1972).

    Google Scholar 

  37. Toupin, R. A., “Theories of elasticity with couple-stress”, Arch. Rat. Mech. Anal., 17, pp. 85–112 (1964).

    Google Scholar 

  38. Eringen, A. C., “Mechanics of micromorphic materials”, Proc. 11th Int. Cong. Appl. Mech., Springer-Verlag, Berlin, 1966, pp. 131–138.

    Google Scholar 

  39. Green, A. E. and Rivlin, R. S., “Multipolar continuum mechanics”, Arch. Rat. Mech. Anal., 17, pp. 113–147 (1964).

    Google Scholar 

  40. Mindlin, R. D., “Micro-structure in linear elasticity”, Arch. Rat. Mech. Anal., 16, pp. 51–78 (1964).

    Google Scholar 

  41. Mason, W. P., Piezoelectric Crystals and their Application to Ultrasonics, van Nostrand, New York, 1950.

    Google Scholar 

  42. Toupin, R. A., “The elastic diclectric”, J. Rat. Mech. Anal., 5, pp. 849–915 (1956).

    Google Scholar 

  43. I. R. E., Standards on Piezoelectric Crystals, 1949, Proc. Inst. Radio Engineers, 37, pp. 1378–1395 (1949).

    Google Scholar 

  44. Mindlin, R. D., “Polarization gradient in elastic dielectrics”, Int. J. Solids Struct., 4, pp. 637–642 (1968).

    Google Scholar 

  45. Lomont, J. S., Applications of Finite Groups, Academic Press, New York, 1959.

    Google Scholar 

  46. Cochran, W., “Theory of lattice vibrations of germanium”, Proc. Roy. Soc., A 253, pp. 260–276 (1959).

    Google Scholar 

  47. DickJr., B. G. and Overhauser, A. W., “Theory of the dielectric constants of alkali halide crystals”, Phys. Rev., 112, pp. 90–103 (1958).

    Google Scholar 

  48. Cochran, W., “Theory of phonon dispersion curves”, in Phonons in Perfect Lattice and in Lattices with Point Imperfections, R. W. H., Stevenson, Editor, Plenum Press, New York, 1966, pp. 53–72.

    Google Scholar 

  49. Askar, A., Lee, P. C. Y. and Cakmak, A. S., “Lattice-dynamics approach to the theory of elastic dielectrics with polarization gradient”, Phys. Rev., B 1, pp. 3525–3537 (1970).

    Google Scholar 

  50. Mead, C. A., “Electron transport mechanisms in thin insulating films”, Phys. Rev., 128, pp. 2088–2093 (1962).

    Google Scholar 

  51. Mead, C. A., “Electron transport in thin insulating films”, Proc. Int. Symp. on Basic Problems in Thin Film Physics, Vandenhoeck & Ruprecht, Göttingen, 1966, pp. 674–678; M.McColl and C.A. Mead, “Electron current through thin mica films”, Trans. Metall. Soc. AIME, 233, pp. 502–511 (1965).

    Google Scholar 

  52. Ku, H Y. and Ullman, F. G., “Capacitance of thin dielectric structures”, J. Appl. Phys., 35, pp. 265–270 (1964).

    Google Scholar 

  53. Mindlin, R. D., “Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric flims”, Int. J. Solids Struct., 5, pp. 1197–1208 (1969).

    Google Scholar 

  54. Schwartz, J., “Solutions of the equations of equilibrium of elastic dielectrics: stress functions, concentrated force, surface energy”, Int. J. Solids Struct., 5, pp. 1209–1220 (1969).

    Google Scholar 

  55. Askar, A., Lee, P. C. Y. and Cakmak, A. S., “The effect of surface curvature and discontinuity on the surface energy density and other induced fields in elastic dielectrics with polarization gradient”, Int. J. Solids Struct., 7, pp. 523–537 (1971).

    Google Scholar 

  56. Pine, A. S., “Direct observation of acoustical activity in α-quartz”, Phys. Rev. B 2, pp. 2049–2054 (1970).

    Google Scholar 

  57. Silin, V. P., “Contribution to the theory of absorption of ultrasound in metals”, JETP 38, pp. 977–983 (1960); Translation: Sov. Phys. JETP 11, pp. 703–707 (1960).

    Google Scholar 

  58. Portigal, D. L. and Burstein, E., “Acoustical activity and other first order spatial dispersion effects in crystals”, Phys. Rev., 170, 673–678 (1968).

    Google Scholar 

  59. Mindlin, R. D. and Toupin, R. A., “Acoustical and optical activity in alpha quartz”, Int. J. Solids Struct. 7, pp. 1219–1227 (1971).

    Google Scholar 

  60. Nye, J. F., Physical Properties of Crystals, Oxford University Press (1959).

  61. Houston, R. A., A Treatise on Light, Longmans, Green, London (1934).

    Google Scholar 

  62. Cady, W. G., Piezoelectricity, Mc Graw-Hill, New York (1946).

    Google Scholar 

  63. Bechmann, R., “Elastic and piezoelectric constants of alpha-quartz”, Phys. Rev. 110, pp. 1060–1061 (1958).

    Google Scholar 

  64. Mindlin, R. D., “A continuum theory of a diatomic, elastic dielectric”, Int. J. Solids Struct., 8, pp. 369–383 (1972).

    Google Scholar 

  65. Mindlin, R. D., “Thickness-shear and flexural vibrations of crystal plates”, J. Appl. Phys., 22, pp. 316–323 (1951).

    Google Scholar 

  66. Mindlin, R. D. and Frray, M., “Thickness-shear and flexural vibrations of contoured crystal plates”, J. Appl. Phys., 25, pp. 12–20 (1954).

    Google Scholar 

  67. Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford University Press (1956) Chapter II.

  68. Huang, K., “On the interaction between the radiation field and ionic crystals”, Proc. Roy. Soc., A 208, pp. 352–365 (1951).

    Google Scholar 

  69. Mindlin, R. D., “Coupled elastic and electromagnetic fields in a diatomic, dielectric continuum”, Int. J. Solids Struct., 8, pp. 401–408 (1972).

    Google Scholar 

  70. Lax, M. and Nelson, D. F., “Linear and nonlinear electrodynamics in elastic anisotropic dielectrics”, Phys. Rev., B 4, pp. 3694–3731 (1971).

    Google Scholar 

  71. Eringen, A. C. and Edelen, D. G. B., On nonlocal elasticity, Int. J. Engng. Sci., 10, pp. 233–248 (1972).

    Google Scholar 

  72. Eringen, A. C., Linear theory of nonlocal elasticity and dispersion of plane waves, Int. J. Engng. Sci. 10, pp. 425–435 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mindlin, R.D. Elasticity, piezoelectricity and crystal lattice dynamics. J Elasticity 2, 217–282 (1972). https://doi.org/10.1007/BF00045712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00045712

Keywords

Navigation