, Volume 75, Issue 3, pp 161–168 | Cite as

Data-dependent permutation techniques for the analysis of ecological data

  • Mario E. Biondini
  • Paul W. MielkeJr
  • Kenneth J. Berry


Two distribution-free permutation techniques are described for the analysis of ecological data. These methods are completely data dependent and provide analyses for the commonly-encountered completely-randomized and randomized-block designs in a multivariate framework. Euclidean distance forms the basis of both techniques, providing consistency with the observed distribution of data in many ecological studies.

Key words

Data analysis Ecological experiment Nonparametric technique Permutation technique Vegetation succession 



Multiresponse permutation procedure


Ibid, randomized block analog


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austin, M. P. 1987. Models for the analysis of species response to environmental gradients. Vegetatio 69: 35–45.Google Scholar
  2. Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H. & Tukey, J. W. 1972. Robust estimates of location: survey and advances. Princeton University Press, Princeton, N. J.Google Scholar
  3. Berry, K. J. & Mielke, P. W. 1984. Computation of exact probability values for multi-response permutation procedures (MRPP). Commun. Statist. Simulation Comput. 13: 417–432.Google Scholar
  4. Biondini, M. E., Bonham, C. D. & Redente, E. F. 1985. Secondary successional patterns in a sagebrush (Artemisia tridentata) community as they relate to soil disturbance and soil biological activity. Vegetatio 60: 25–36.Google Scholar
  5. Brockwell, P. J., Mielke, P. W. & Robinson, J. 1982. On non-normal invariance principles for multi-response permutation procedures. Austral. J. Statist. 24: 33–41.Google Scholar
  6. Dielman, T. E. 1984. Least absolute value estimation in regression models: an annotated bibliography. Commun. Statist. 13: 513–541.Google Scholar
  7. Dietz, T., Frey, R. S. & Kalof, L. 1987. Estimation with cross-national data: robust and nonparametric methods. Amer. Soc. Rev. 52: 380–390.Google Scholar
  8. Dodge, Y. 1987. An introduction to L1-norm based statistical data analysis. Comput. Statist. Data Anal. 5:239–253.Google Scholar
  9. Hampel, F. R., Ronchetti, E. M., Bousseeuw, P. J. & Stahel, W. A. 1986. Robust statistics: The approach based on influence functions. Wiley, New York.Google Scholar
  10. Harter, H. L. 1974–1976. The method of least squares and some alternatives I. Int. Statist. Rev. 42: 147–174; II. 42: 235–264; III. 43: 1–44; IV. 43: 125–190, 273–278; V. 43: 269–272; VI. 44: 113–159.Google Scholar
  11. Huynh, H. 1982. A comparison of four approaches to robust regression. Psych. Bull. 92: 505–512.Google Scholar
  12. Huynh, H. & Mandeville, G. K. 1979. Validity conditions in repeated measures designs. Psych. Bull 86: 964–973.Google Scholar
  13. Mielke, P. W. 1984. Meteorological applications of permutation techniques based on distance functions. In: Krishnaiah, P. R. & Sen, P. K. (eds), Handbook of statistics. Vol. 4, pp. 813–830. Elsevier Science Publishers, Amsterdam.Google Scholar
  14. Mielke, P. W. 1986. Non-metric statistical analysis: some metric alternatives. J. Statist. Plann. Inference 13: 377–387.Google Scholar
  15. Mielke, P. W. 1987. L1, L2 and L regression models: is there a difference? J. Statist. Plann. Inference 16: 430.Google Scholar
  16. Mielke, P. W., Berry, K. J. & Johnson, E. S. 1976. Multiresponse permutation procedures for a priori classifications. Commun. Statist. — Theor. Meth. 5: 1409–1424.Google Scholar
  17. Narula, S. C. & Wellington, J. F. 1982. The minimum sum of absolute errors regression: a state of the art survey. Int. Statist. Rev. 50: 317–326.Google Scholar
  18. Redente, E. F., Doerr, T. B., Grygiel, C. E., Allderdings, E., Stark, J. M. & Biondini, M. E. 1982. Effect of plant species, soil material, and cultural practices upon plant establishment on succession. In: Redente, E. F. & Cook, C. W. (eds), Revegetation studies on oil shale related disturbances in Colorado, pp. 1–25. DOE/EV/0401806. Dept. Range Science, Colorado State University, Fort Collins, Colorado.Google Scholar
  19. Rey, W. J. J. 1983. Introduction to robust and quasi-robust statistical methods. Springer-Verlag, Berlin.Google Scholar
  20. Sala, O. E. & Lauenroth, W. K. 1982. Small rainfall events: and ecological role in semiarid regions. Oecologia 53: 301–304.Google Scholar
  21. Soriano, A. & Sala, O. 1983. Ecological strategies in a Patagonian arid steppe, Vegetatio 56: 9–15.Google Scholar
  22. Wu, L. 1985. Robust M-estimation of location and regression. In: Tuma, N. B. (ed.), Sociological methodology, pp. 316–388. Jossey-Bass, San Francisco.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Mario E. Biondini
    • 1
  • Paul W. MielkeJr
    • 2
  • Kenneth J. Berry
    • 3
  1. 1.Department of Animal and Range ScienceNorth Dakota State UniversityFargoUSA
  2. 2.Department of StatisticsColorado State UniversityFort CollinsUSA
  3. 3.Department of SociologyColorado State UniversityFort CollinsUSA

Personalised recommendations