Abstract
A stabilization problem for Burgers' equation is considered. Using linearization, various controllers are constructed which minimize certain weighted energy functionals. These controllers produce the desired degree of stability for the closed-loop nonlinear system. A numerical scheme for computing the feedback gain functional is developed and several numerical experiments are performed to illustrate the theoretical results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anderson, B. D. O. and Moore, I. B., ‘Linear system optimisation with prescribed degree of stability’,Proc. IEEE 116, 1960, 2083–2087.
Banks, H. T. and Kunish, K., ‘The linear regulator problem for parabolle systems’,SIAM J. Control and Optim. 22, 1984, 684–698.
Burgers, J. M., ‘Mathematical examples illustrating relations occuring in the theory of turbulent fluid motion’,Trans. Roy. Neth. Acad. Sci. 17, Amsterdam, 1939, 1–53.
Burgers, J. M., ‘A mathematical model illustrating the theory of turbulence’,Adv. in Appl. Mech. 1, 1948, 171–199.
Burgers, J. M., ‘Statistical problems connected with asymptotic solution of one-dimensional nonlinear diffusion equation’, in M. Rosenblatt and C. van Atta (eds.),Statistical Models and Turbulence, Springer, Berlin, 1972, 41–60.
Chen, G., Wang, H. K. and Weerakoon, S., ‘An initial value control problem for Burgers' equation’, in F. Kappel. K. Kunish and W. Schappacher (eds.),Distributed Parameter Systems, Lecture Notes in Control and Information Sciences75, 1985, 52–76.
Cole, J. D., ‘On a quasi-linear parabolic equation occuring in aerodynamics’,Quart. Appl. Math. IX, 1951, 225–236.
Conway, J. B.,A Course in Functional Analysis, Springer-Verlag, New York, 1985.
Curtain, R. F., ‘Stability of semilinear evolution equations in Hilbert space’,J. Math. Pures et Appl. 63, 1984, 121–128.
Fletcher, C. A. J., ‘Burgers' equation: a model for all reasons’, in J. Noye (ed.),Numerical Solution of Partial Differential Equations, North-Holland, 1982, 139–225.
Gibson, J. S., ‘The Riceati integral equations for optimal control problems on Hilbert spaces’,SIAM J. Control and Optim. 17, 1979, 537–565.
Gibson, J. S. and Rosen, I. G., ‘Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems’, Institute for Computer Applications for Science and Engineering, ICASE Report86–16, 1986, NASA Langley Research Center, Hampton, VA.
Glimm, J. and Lax, P.,Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws, Amer. Math. Soc. Memoir101, A.M.S., Providence, 1970.
Henry, D.,Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, New York, 1981.
Hopf, E., ‘The partial differential equationu i+uux=μuxx’,Comm. Pure and Appl. Math 3, 1950, 201–230.
Ito, K., ‘Strong convergence and convergence rates of approximating solutions for algebraic Riccati equations in Hilbert spaces’. LCDS/CCS Report87-15, Brown University, 1987.
Kielhöfer, H., ‘Stability and semilinear evolution equations in Hilbert space’,Arch. Rat. Mech. Anal.,57, 1974, 150–165.
Lasiecka, I., ‘Unified theory for abstract parabolic boundary problems — a semigroup approach’,Appl. Math. Optim. 6, 1980, 287–333.
Lax, P. D.,Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMS-NSF Regional Conference Series in Applied Mathematics11, SIAM, 1973.
Lighthill, M. J., ‘Viscosity effects in sound waves of finite amplitude’, in G. K. Bachelor and R. M. Davies (eds.),Surveys in Mechanics, Cambridge University Press, Cambridge, 1956, 250–351.
Maslov, V. P., ‘On a new principle of superposition for optimization problems’,Uspekhi Mat. Nauk 42, 1987, 39–48.
Maslov, V. P., ‘A new approach to generalized solutions of nonlinear systems’,Soviet Math. Dokl 35, 1987, 29–33.
Ole% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbqfgBHr% xAU9gimLMBVrxEWvgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvA% Tv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9% vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea% 0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabe% aadaabauaaaOqaaiqadMgagaafaaaa!3DAC!\[\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{i} \]nik, O. A., ‘Discontinuous solutions of nonlinear differential equations’,Uspsekhi Math. Nauk 12, 1957, 3–73 (English TranslationAmer. Math. Soc. Trans., Series 2,26, 95–172).
Pazy, A.,Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
Pritchard, A. J. and Salamom, D., ‘The linear quadratic control prolem for infinite dimensional systems with unbounded input and output operators’,SIAM J. Control and Optim.25, 1987, 121–144.
Rankin, S. M., ‘Semilinear evolution equations in Banach spaces with application to parabolic partial differential equations’, Preprint, 1989.
Russell, D. L.,Mathematics of Finite-Dimensional Control Systems: Theory and Design, Marcel Dekker Inc., 1979.
Schultz, M. H.,Spline Analysis, Prentice-Hall, N.J., 1973.
Smoller, J.,Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, 1983.
Stoer, J. and Bulirsch, R.,Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.
Walker, J. A.,Dynamical Systems and Evolution Equations, Theory and Applications, Plenum Press, New York, 1980.
Weerakoon, S., ‘An initial value control problem for the Burgers equation’, Ph.D. Thesis, Department of Mathematics, Pennsylvania State University, December, 1984.
Wloka, J.,Partial Differential Equations, Cambridge University Press, Cambridge, 1987.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Burns, J.A., Kang, S. A control problem for Burgers' equation with bounded input/output. Nonlinear Dyn 2, 235–262 (1991). https://doi.org/10.1007/BF00045296
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00045296