Skip to main content
Log in

A control problem for Burgers' equation with bounded input/output

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A stabilization problem for Burgers' equation is considered. Using linearization, various controllers are constructed which minimize certain weighted energy functionals. These controllers produce the desired degree of stability for the closed-loop nonlinear system. A numerical scheme for computing the feedback gain functional is developed and several numerical experiments are performed to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Anderson, B. D. O. and Moore, I. B., ‘Linear system optimisation with prescribed degree of stability’,Proc. IEEE 116, 1960, 2083–2087.

    Google Scholar 

  2. Banks, H. T. and Kunish, K., ‘The linear regulator problem for parabolle systems’,SIAM J. Control and Optim. 22, 1984, 684–698.

    Google Scholar 

  3. Burgers, J. M., ‘Mathematical examples illustrating relations occuring in the theory of turbulent fluid motion’,Trans. Roy. Neth. Acad. Sci. 17, Amsterdam, 1939, 1–53.

    Google Scholar 

  4. Burgers, J. M., ‘A mathematical model illustrating the theory of turbulence’,Adv. in Appl. Mech. 1, 1948, 171–199.

    Google Scholar 

  5. Burgers, J. M., ‘Statistical problems connected with asymptotic solution of one-dimensional nonlinear diffusion equation’, in M. Rosenblatt and C. van Atta (eds.),Statistical Models and Turbulence, Springer, Berlin, 1972, 41–60.

    Google Scholar 

  6. Chen, G., Wang, H. K. and Weerakoon, S., ‘An initial value control problem for Burgers' equation’, in F. Kappel. K. Kunish and W. Schappacher (eds.),Distributed Parameter Systems, Lecture Notes in Control and Information Sciences75, 1985, 52–76.

  7. Cole, J. D., ‘On a quasi-linear parabolic equation occuring in aerodynamics’,Quart. Appl. Math. IX, 1951, 225–236.

    Google Scholar 

  8. Conway, J. B.,A Course in Functional Analysis, Springer-Verlag, New York, 1985.

    Google Scholar 

  9. Curtain, R. F., ‘Stability of semilinear evolution equations in Hilbert space’,J. Math. Pures et Appl. 63, 1984, 121–128.

    Google Scholar 

  10. Fletcher, C. A. J., ‘Burgers' equation: a model for all reasons’, in J. Noye (ed.),Numerical Solution of Partial Differential Equations, North-Holland, 1982, 139–225.

  11. Gibson, J. S., ‘The Riceati integral equations for optimal control problems on Hilbert spaces’,SIAM J. Control and Optim. 17, 1979, 537–565.

    Google Scholar 

  12. Gibson, J. S. and Rosen, I. G., ‘Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems’, Institute for Computer Applications for Science and Engineering, ICASE Report86–16, 1986, NASA Langley Research Center, Hampton, VA.

    Google Scholar 

  13. Glimm, J. and Lax, P.,Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws, Amer. Math. Soc. Memoir101, A.M.S., Providence, 1970.

    Google Scholar 

  14. Henry, D.,Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, New York, 1981.

    Google Scholar 

  15. Hopf, E., ‘The partial differential equationu i+uux=μuxx’,Comm. Pure and Appl. Math 3, 1950, 201–230.

    Google Scholar 

  16. Ito, K., ‘Strong convergence and convergence rates of approximating solutions for algebraic Riccati equations in Hilbert spaces’. LCDS/CCS Report87-15, Brown University, 1987.

  17. Kielhöfer, H., ‘Stability and semilinear evolution equations in Hilbert space’,Arch. Rat. Mech. Anal.,57, 1974, 150–165.

    Google Scholar 

  18. Lasiecka, I., ‘Unified theory for abstract parabolic boundary problems — a semigroup approach’,Appl. Math. Optim. 6, 1980, 287–333.

    Google Scholar 

  19. Lax, P. D.,Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMS-NSF Regional Conference Series in Applied Mathematics11, SIAM, 1973.

  20. Lighthill, M. J., ‘Viscosity effects in sound waves of finite amplitude’, in G. K. Bachelor and R. M. Davies (eds.),Surveys in Mechanics, Cambridge University Press, Cambridge, 1956, 250–351.

    Google Scholar 

  21. Maslov, V. P., ‘On a new principle of superposition for optimization problems’,Uspekhi Mat. Nauk 42, 1987, 39–48.

    Google Scholar 

  22. Maslov, V. P., ‘A new approach to generalized solutions of nonlinear systems’,Soviet Math. Dokl 35, 1987, 29–33.

    Google Scholar 

  23. Ole% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbqfgBHr% xAU9gimLMBVrxEWvgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvA% Tv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9% vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea% 0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabe% aadaabauaaaOqaaiqadMgagaafaaaa!3DAC!\[\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{i} \]nik, O. A., ‘Discontinuous solutions of nonlinear differential equations’,Uspsekhi Math. Nauk 12, 1957, 3–73 (English TranslationAmer. Math. Soc. Trans., Series 2,26, 95–172).

    Google Scholar 

  24. Pazy, A.,Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

    Google Scholar 

  25. Pritchard, A. J. and Salamom, D., ‘The linear quadratic control prolem for infinite dimensional systems with unbounded input and output operators’,SIAM J. Control and Optim.25, 1987, 121–144.

    Google Scholar 

  26. Rankin, S. M., ‘Semilinear evolution equations in Banach spaces with application to parabolic partial differential equations’, Preprint, 1989.

  27. Russell, D. L.,Mathematics of Finite-Dimensional Control Systems: Theory and Design, Marcel Dekker Inc., 1979.

  28. Schultz, M. H.,Spline Analysis, Prentice-Hall, N.J., 1973.

    Google Scholar 

  29. Smoller, J.,Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, 1983.

  30. Stoer, J. and Bulirsch, R.,Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.

    Google Scholar 

  31. Walker, J. A.,Dynamical Systems and Evolution Equations, Theory and Applications, Plenum Press, New York, 1980.

    Google Scholar 

  32. Weerakoon, S., ‘An initial value control problem for the Burgers equation’, Ph.D. Thesis, Department of Mathematics, Pennsylvania State University, December, 1984.

  33. Wloka, J.,Partial Differential Equations, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, J.A., Kang, S. A control problem for Burgers' equation with bounded input/output. Nonlinear Dyn 2, 235–262 (1991). https://doi.org/10.1007/BF00045296

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00045296

Key words

Navigation