Skip to main content
Log in

Bifurcations in a vocal fold model

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An autonomous fourth order model of vocal fold vibrations is proposed. Each fold is represented by a lower and upper mass, and the aerodynamic forces are derived from a modified Bernoulli equation. The model exhibits many features of normal phonation in a wide parameter region. At the borderlines of this region coexistence of limit cycles, period-doubling and chaos are observed. Implications for an understanding of pathological voices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van den Berg, J., Zantema, J. T., and Doornenbal, P., ‘On the air resistance and the Bernoulli effect of the human larynx’, J. Acoust. Soc. Am. 29, 1957, 626–631.

    Google Scholar 

  2. Ishizaka, K. and Flanagan, J. L., ‘Synthesis of voiced sounds from a two-mass model of the vocal cords’, Bell. Syst. Techn. 51, 1972, 1233–1268.

    Google Scholar 

  3. Titze, I. R. (ed.), Vocal Fold Physiology: New Frontiers in Basic Science, Singular Publ. Group, San Diego, 1993.

    Google Scholar 

  4. Mende, W., Herzel, H., and Wermke, K., ‘Bifurcations and chaos in newborn infant cries’, Phys. Lett. A 145, 1990, 418–424.

    Google Scholar 

  5. Herzel, H. and Wendler, J., ‘Evidence of chaos in phonatory samples’, in Proceed, EUROSPEECH, Genova, 1991, 263–266.

  6. Titze, I. R. and Talkin, D. T., ‘A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation’, J. Acoust. Soc. Am. 66, 1979, 60–74.

    Google Scholar 

  7. Liljenkrants, J., ‘Numerical simulations of glottal flow’, in Proceed. EUROSPEECH, Genova, 1991, 255–258.

  8. Berry, M., Herzel, H., Titze, I., and Krischer, K., ‘Interpretation of biochemical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions’, J. Acoust. Soc. Am., in press.

  9. Stevens, K. N., ‘Physics of laryngeal behaviour and larynx modes’, Phonetica 34, 1977, 264–279.

    Google Scholar 

  10. Baer, T., ‘Investigation of the phonatory mechanism’, ASHA Report 11, 1981, 38–47.

    Google Scholar 

  11. Iijima, H., Miki, N., and Nagai, N., ‘Glottal impedance based on a finite element analysis of two-dimensional unsteady viscous flow in a static glottis’, IEEE Trans. Signal Proc. 40, 1992, 2125–2135.

    Google Scholar 

  12. Cranen, B. and Boves, L., ‘On subglottal formant analysis’, J. Acoust. Soc. Am. 81, 1987 734–746.

    Google Scholar 

  13. Hirano, M., ‘Structure and vibratory behaviour of the vocal folds’, in Dynamic Aspects of Speech Production, M. Sawashima and F. S. Cooper (eds.), University of Tokyo Press, Tokyo, 1977, 13–30.

    Google Scholar 

  14. Awrejcewicz, J., ‘Numerical analysis of the oscillations of human vocal cords’, Nonlinear Dynamics 2, 1991, 35–52.

    Google Scholar 

  15. Kubicek, M. and Marek, M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer, New York, 1983.

    Google Scholar 

  16. Knudsen, C., Feldberg, R., and Jaschinski, A., ‘Non-linear dynamic phenomena in the behaviour of a rallway wheelset model’, Nonlinear Dynamics 2, 1991, 389–404.

    Google Scholar 

  17. Titze, I. R., ‘The human vocal cords: A mathematical model. Part II’, Phonetica 28, 1973, 129–170.

    Google Scholar 

  18. Smith, M. E., Berke, G. S., Gerratt, B. R., and Kreiman, J., ‘Laryngeal paralyses: Theoretical considerations and effects on laryngeal vibration’, J. Speech Hear. Res. 35, 1992, 545–554.

    Google Scholar 

  19. Herzel, H., Steinecke, I., Mende, W., and Wermke, K., ‘Chaos and bifurcations during voiced speechls, in Complexity. Chaos and Biological Evolution, E. Mosekilde and L. Mosekilde (eds.), Plenum Press, New York, 1991, 41–50.

    Google Scholar 

  20. Kelman, A. W., ‘Vibratory pattern of the vocal folds’, Folia Phoniatr 33, 1981, 73–99.

    Google Scholar 

  21. Ramig, L. A., Scherer, R. C., Titze, I. R., and Ringel, S. P., ‘Acoustic analysis of voices of patients with neurologic disease: Rational and preliminary data, Ann. Otol. Rhinol, Laryngol. 97, 1988, 164–172.

    Google Scholar 

  22. Ishizaka, K. and Isshiki, N., ‘Computer simulation of pathological vocal-cord vibration’, J. Acoust. Soc. Am. 60, 1976, 1193–1198.

    Google Scholar 

  23. Herzel, H., Berry, D., Titze, I., and Saleh, M., ‘Analysis of vocal disorders with methods from nonlinear dynamics’, J. Speech Hear. Res., in press.

  24. Wong, D., Ito, M. R., Cox, N. B., and Titze, I. R., ‘Observation of perturbation in a lumped-clement model of the vocal folds with application to some pathological cases’, J. Acoust. Soc. Am. 89, 1991, 383–394.

    Google Scholar 

  25. Ebeling, W., Engel-Herbert, H., and Herzel, H., Selbstorganisation in der Zeit, Akademic-Verlag, 1990.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzel, H., Knudsen, C. Bifurcations in a vocal fold model. Nonlinear Dyn 7, 53–64 (1995). https://doi.org/10.1007/BF00045125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00045125

Key words

Navigation