Skip to main content
Log in

Limit cycle analysis of a class of strongly nonlinear oscillation equations

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The limit cycle of a class of strongly nonlinear oscillation equations of the form % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiqadwhagaWaaiabgUcaRmXvP5wqonvsaeHbbjxAHXgiofMCY92D% aGqbciab-DgaNjab-HcaOiaadwhacqWFPaqkcqWF9aqpcqaH1oqzca% WGMbGaaiikaiaadwhacaGGSaGabmyDayaacaGaaiykaaaa!50B8!\[\ddot u + g(u) = \varepsilon f(u,\dot u)\] is investigated by means of a modified version of the KBM method, where ɛ is a positive small parameter. The advantage of our method is its straightforwardness and effectiveness, which is suitable for the above equation, where g(u) need not be restricted to an odd function of u, provided that the reduced equation, corresponding to ɛ=0, has a periodic solution. A specific example is presented to demonstrate the validity and accuracy of our 09 method by comparing our results with numerical ones, which are in good agreement with each other even for relatively large ɛ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayfeh A. H., Perturbation Methods, Wiley, New York. 1973.

    Google Scholar 

  2. Nayfeh A. H., Introduction to Perturbation Techniques, Wiley, New York, 1981.

    Google Scholar 

  3. Holmes P. and Rand D., ‘Phase portraits and bifurcations of the non-linear oscillator: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiqadIhagaWaaiabgUcaRiaacIcacqaHXoqycqGHRaWkcqaHZoWz% caWG4bWaaWbaaSqabeaacaaIYaaaaOGaaiykaiaadIhacqGHRaWkcq% aHYoGycaWG4bGaey4kaSIaeqiTdqMaamiEamaaCaaaleqabaGaaG4m% aaaakiabg2da9iaaicdaaaa!503D!\[\ddot x + (\alpha + \gamma x^2 )x + \beta x + \delta x^3 = 0\], International Journal of Non-Linear Mechanics 15, 1980, 449.

    Google Scholar 

  4. Knobloch E. and Proctor M. R. E., ‘Nonlinear periodic convection in double-diffusive systems’, Journal of Fluid Mechanics 108, 1981, 2911.

    Google Scholar 

  5. Burton T. D., ‘Non-linear oscillator limit cycle analysis using a time transformation approach’, International Journal of Nonlinear Mechanics 17, 1982, 7–19.

    Google Scholar 

  6. Margallo J.-G. and Bejarano J. D., ‘A generalization of the method of harmonic balance’, Journal of Sound and Vibration 116, 1987, 591.

    Google Scholar 

  7. Margallo J.-G., Bejarano J. D., and Yuste S. B., ‘Generalized Fourier series for the study of limit cycles’, Journal of Sound and Vibration 125, 1988, 13.

    Google Scholar 

  8. Margallo J.-G. and Bejarano J. D., ‘Stability of limit cycles and bifurcations of generalized van der Pol oscillators: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiqadIhagaWaaiabgUcaRiaadgeacaWG4bGaeyOeI0IaaGOmaiaa% dkeacaWG4bWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaeqyTduMaai% ikaiaadQhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWG6bWaaSba% aSqaaiaaikdaaeqaaOGaamiEamaaCaaaleqabaGaaGOmaaaakiabgU% caRiaadQhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaWbaaSqabeaa% caaI0aaaaOGaaiykaiqadIhagaGaaiabg2da9iaaicdaaaa!565C!\[\ddot x + Ax - 2Bx^3 + \varepsilon (z_3 + z_2 x^2 + z_1 x^4 )\dot x = 0\], International Journal of Non-Linear Mechanics 25, 1990, 663–675.

    Google Scholar 

  9. Chen S. H., Cheung Y. K., and Lau S. L., ‘On perturbation procedure for limit cycle analysis’, International Journal of Non-Linear Mechanics 26, 1991, 125–133.

    Google Scholar 

  10. Moremedi G. M., Mason D. P., and Gorringe V. M., ‘On the limit cycle of a generalized van der Pol equation’, International Journal of Non-Linear Mechanics 28, 1993, 237–250.

    Google Scholar 

  11. Dai Shi-qiang, ‘Asymptotic analysis of strongly nonlinear oscillator’, Applied Mathematics and Mechanics (English Edition), 6, 1985, 409–415.

    Google Scholar 

  12. Shen Jia-qi and Yu Buo-hua, ‘Chaotic behavior of a nonlinear perturbation equation’, Acta Mathematica Sinica 31, 1988, 215–220 (in Chinese).

    Google Scholar 

  13. Byrd P. F. and Friedman M. D., Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed., Springer-Verlag, New York, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, ZC., Dai, SQ. Limit cycle analysis of a class of strongly nonlinear oscillation equations. Nonlinear Dyn 10, 221–233 (1996). https://doi.org/10.1007/BF00045104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00045104

Key words

Navigation