, Volume 68, Issue 2, pp 71–82 | Cite as

Aboveground biomass of tropical rain forest stands in Indonesian Borneo

  • T. Yamakura
  • A. Hagihara
  • S. Sukardjo
  • H. Ogawa


Aboveground plant biomass was examined in a tall virgin tropical lowland evergreen rain forest dominated by Dipterocarpaceae in Sebulu, East Kalimantan, Indonesia, with special reference to the gap-, building- and mature phases of the forest growth cycle. From the records of dimensions of sample trees examined by the stratified clip technique and DBH inventory data of trees in a study plot, the biomass of larger trees (DBH ≥4.5 cm) was estimated by the allometric correlation method. The biomass of smaller plants (DBH < 4.5 cm) was estimated by harvesting the plants in small quadrat plots. Although large differences were found between aboveground-biomass-estimates in different patches of different growth stages, the aboveground biomass in a 1.0 ha plot was 509 t/ha, and the one-sided LAI was 7.3 ha/ha. These values seem to result from the tall forest architecture with huge emergent trees (over 70 m high) and a moderate packing of plant mass indicated by the basal area value of 38.8 m2/ha for trees with DBH ≥4.5 cm.


Biomass Building phase Dipterocarp forest Gap Indonesia Kalimantan Mature phase Tropical rain forest 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. A. R., 1957. The enumeration of 235 acres of dipterocarp forest in Brunei. Malay. For. 20: 144–150.Google Scholar
  2. Anderson, J. M., Proctor, J. & Vallack, H. W., 1983. Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. III. Decomposition processes and nutrient losses from leaf. J. Ecol. 71: 50–527.Google Scholar
  3. Ashton, P. S., 1964a. Ecological studies in the mixed dipterocarp forests of Brunei State. Oxford Memoirs 25. Clarendon Press, Oxford.Google Scholar
  4. Ashton, P. S., 1964b. A manual of the dipterocarp trees of Brunei State. Oxford Univ. Press, London.Google Scholar
  5. Berlage, H. P., 1949. Regenval in Indonesia. Koninklijk Magnetisch Observatorium te Batavia, Publ. 37.Google Scholar
  6. Brunig, E. F., 1970. Stand structure, physiognomy, and environmental factors in some lowland forests in Sarawak. Trop. Ecol. 11: 26–43.Google Scholar
  7. Brunig, E. H., 1973. Species richness and stand diversity in relation to site and succession of forests in Sarawak and Brunei (Borneo). Amazonia 4: 293–320.Google Scholar
  8. Burges, P. F., 1961. The structure and composition of lowland tropical rainforest in North Borneo. Malay. For. 24: 66–80.Google Scholar
  9. Burnham, C. P., 1984. The forest environment: Soils. In: T. C., Whitmore (ed.), Tropical rain forests on the Far East, 2nd ed., pp. 137–154. Clarendon Press, Oxford.Google Scholar
  10. Fölster, H., Salas, G. D. E. & Khana, P., 1976. A tropical evergreen forest site with perched water table, Magdalena Valley, Columbia. Biomass and bioelement inventory of primary and secondary vegetation. Oecol. Plant. 11: 297–320.Google Scholar
  11. Fox, J. E. D., 1967. An enumeration of lowland dipterocarp forest in Sabah. Malay. For. 30: 263–279.Google Scholar
  12. Foxworthy, F. W., 1927. Commercial timber trees of the Malay Peninsula. Malay. For. Rec. 29. For. Dept. Malaysia.Google Scholar
  13. Golley, F. B., McGinnis, J. T., Clements, R. G., Child, G. I. & Duever, M. J., 1975. Mineral cycling in a tropical moist forest ecosystem. University of Georgia Press, Athens, GA.Google Scholar
  14. Hozumi, K., Yoda, K., Kokawa, S. & Kira, T., 1969. Production ecology of tropical rain forests in southwestern Cambodia. I. Plant biomass. Nature & life in southeast Asia 6: 1–49.Google Scholar
  15. Jordan, C. F., 1978. Stem flow and nutrient transfer in a tropical rain forest. Oikos 31: 257–263.Google Scholar
  16. Jordan, C. F. & Uhl, C., 1978. Biomass of a ‘terra firma’ forest of the Amazon Basin. Oecol. Plant. 13: 387–400.Google Scholar
  17. Kanzaki, M., 1984. Regeneration in subalpine coniferous forest I. Mosaic structure and regeneration process in a Tsuga diversifolia forest. Bot. Mag. Tokyo 97: 297–311.Google Scholar
  18. Kartawinata, K., 1975. Geographic and climatic analysis of the nature reserve system in Indonesia. BioIndonesia 1: 9–15.Google Scholar
  19. Kartawinata, K., 1980. A note on a kerangas (heath) forest at Sebulu, East Kalimantan. Reinwardtia 9: 429–447.Google Scholar
  20. Kato, R., Tadaki, Y. & Ogawa, H., 1978. Plant biomass and growth increment studies in Pasoh Forest Reserve. Malay. Nat. J. 30: 211–224.Google Scholar
  21. Kira, T., 1978. Community architecture and organic matter dynamics in tropical lowland rain forests of southeast Asia with special reference to Pasoh Forest, west Malaysia. In: P. B., Tomlinson & M. H., Zimmermann (eds), Tropical trees as living systems, pp. 561–590, University Press, Cambridge.Google Scholar
  22. Meijer, W. & Wood, G. H. S., 1964. Dipterocarps of Sabah (north Borneo). Sabah For. Rec. 5. For. Dept., Sandakan.Google Scholar
  23. Monsi, M. & Saeki, T., 1953. Über den Lichtfactor in den Pflanzengesellschaften und ihre Bedeutung fur die Stoffproduktion. Jap. J. Bot. 14: 22–52.Google Scholar
  24. Naka, K., 1982. Community dynamics of evergreen broadleaf forest in southwestern Japan I. Wind damaged trees and canopy gaps in an evergreen oak forest. Bot. Mag. Tokyo 95: 385–399.Google Scholar
  25. Nakashizuka, T. & Numata, M., 1982. Regeneration process of climax beech forests I. Structure of a beech forest with the undergrowth of Sasa. Jap. J. Ecol. 32: 57–67.Google Scholar
  26. Nicholson, D. I., 1965. A review of natural regeneration in the depterocarp forests of Sabah. Malay. For. 28: 4–26.Google Scholar
  27. Ogawa, H. & Kira, T., 1977. Methods of estimating forest biomass. In: T., Shidei & T., Kira (eds), Primary productivity of Japanese forests, JIBP Synthesis 16, pp. 15–25. Univ. of Tokyo Press, Tokyo.Google Scholar
  28. Ogawa, H., Yoda, K., Ogino, K. & Kira, T., 1965. Comparative ecological studies on three main types of forest vegetation in Thailand. II. Plant biomass. Nature & life in southeast Asia 4: 49–80.Google Scholar
  29. Ogino, K., Ratanawongs, D., Tsutsumi, T. & Shidei, T., 1967. The primary productivity of tropical forests in Thailand. Tonan Asia Kenkyu. Southeast Asian Stud. 5: 121–154.Google Scholar
  30. Ohsawa, M., 1981. A basic unit in forest community dynamics: a case study in the subalpine forest of Japan. In: Proc. Biotrop Symp. on Forest Regeneration in Southeast Asia, Bogor. pp. 43–62. Biotrop, Bogor.Google Scholar
  31. Proctor, J., Anderson, J. M., Chai, P. & Vallack, H. W., 1983a. Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. I. Forest environment, structure and floristics. J. Ecol. 71: 237–260.Google Scholar
  32. Proctor, J., Anderson, J. M., Fogden, S. C. L. & Vallack, H. W., 1983b. Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. II. Litterfall, litter standing crop and preliminary observations on herbivory. J. Ecol. 71: 261–283.Google Scholar
  33. Research Group on Forest Productivity, Japan. 1960–1966. Studies on the productivity of the forest I: I (1960), II (1964), III (1966), Tokyo (in Japanese).Google Scholar
  34. Richards, P. W., 1936a. Ecological observations on the rain forest of Mount Dulit, Sarawak. Parts I and II. J. Ecol. 24: 1–37, 340–360.Google Scholar
  35. Richards, P. W., 1952. The tropical rain forest: An ecological study. Cambridge University Press, Cambridge. (reprinted version with corrections, 1976).Google Scholar
  36. Sabhasri, S., Khemnark, C., Askornkoae, S. & Ratisoonthorn, P., 1968. Primary production in dry evergreen forest at Sakaerat, Amphoe Pak Thong Chai, Changwat Nakhon Ratchasima. I. Estimation of biomass and distribution amongst various organs. ASCRT Cooperative Research Programme 27, ASCRT, Bangkok, 38 pp.Google Scholar
  37. Schmidt, F. H. & Ferguson, J. H. A., 1951. Rainfall types based on wet and dry period ratios for Indonesia with western New Guinea. Kementerian Perhubungan, Jawatan Meteorologi dan Geofisika, Verh. 42.Google Scholar
  38. Sukanto, M., 1969. Climate of Indonesia. In: H., Arakawa (ed.), Climates of northern and eastern Asia, World Survey of Climatology 8, pp. 215–229. Elservier, Amsterdam.Google Scholar
  39. Suprianta, S. & Rustendi, E., 1979. Peta Geologi Sementara Lembar Samarinda Kalimantan Timur.Google Scholar
  40. Symington, C. F., 1943. Forester's manual of dipterocarps. Malay. For. Rec. 16. (new ed. 1974, University Malaya Press).Google Scholar
  41. Van, Bemmelen, R. W., 1970. The geology of Indonesia, Vol. 1a: General geology of Indonesia and adjacent archipelagoes. 2nd ed. Martinus Nijhoff, The Hague.Google Scholar
  42. Whitmore, T. C., 1978. Gaps in the forest canopy. In: P. B., Tomlinson & M. H., Zimmermann (eds), Tropical trees as living systems, pp. 639–655. University Press, Cambridge.Google Scholar
  43. Whitmore, T. C., 1982. On pattern and process in forests. In: E. I., Newman (ed.), The plant community as a working mechanism, pp. 45–59. Blackwell, Oxford.Google Scholar
  44. Whitmore, T. C., 1984. Tropical rain forests of the Far East, 2nd ed. Clarendon Press, Oxford.Google Scholar

Copyright information

© Dr W. Junk Publishers 1986

Authors and Affiliations

  • T. Yamakura
    • 1
  • A. Hagihara
    • 2
  • S. Sukardjo
    • 3
  • H. Ogawa
    • 4
  1. 1.Department of Biology, Faculty of ScienceOsaka City UniversityOsakaJapan
  2. 2.Department of Forestry, Faculty of AgricultureNagoya UniversityNagoyaJapan
  3. 3.Herbarium BogorienseBogorIndonesia
  4. 4.Botanical Garden, Faculty of ScienceOsaka City UniversityOsakaJapan

Personalised recommendations