Skip to main content
Log in

Simulating forest succession along ecological gradients in southern Central Europe

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Forest stand development was simulated using a forest succession model of the JABOWA/FORET type. The environmental conditions are representative for a wide spectrum of Swiss forest sites ranging from 220 m to 1 700 m a.s.l. Each model run covers a period of 1 200 yr and is based on the averaged successional characteristics of 50 forest plots with an individual size of 1/12 ha. These small forest plots serve as basic units to simulate establishment, growth, and death of individual trees of 29 species. Existing light in the forest stand, climatic conditions, soil properties, and other environmental factors control the growth of each individual tree. Compared with previous simulation studies, some major modifications were made, including the incorporation of the indicator values of Ellenberg (1979) to describe the ecophysiological behaviour of the species considered. As a test, the simulated species composition through time was compared with the actual vegetation and the potentially natural species composition on the corresponding site types. The extensive comparison revealed that approximately 80% of the simulations match the expected species configurations. Thus, it was concluded that the model is valid for the purpose of evaluating impacts of natural and human disturbances on forest communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonietti A. 1975. Il paesaggio vegetale del Sottoceneri. Note illustrative delle carte idrogeologiche del Sottoceneri 1:25 000, 1. parte. Quaderni di geologia e geofisica applicata 1: 33–58. Dipartimento cantonale economia publica, Ufficio geologico cantonale, Bellinzona.

    Google Scholar 

  • Amann, G. 1954. Bäume und Sträucher des Waldes. Neumann, Neudamm.

  • Bernatzky A. 1978. Tree ecology and preservation. Elsevier, Amsterdam.

    Google Scholar 

  • Botkin D. B., Janak J. F. & Wallis J. R. 1972. Some ecological consequences of a computer model of forest growth. J. Ecol. 60: 849–872.

    Google Scholar 

  • Burnand, J. 1976. Quercus pubescens — Wälder und ihre ökologischen Grenzen im Wallis (Zentralalpen). Veröff. Geobot. Inst. ETH Zürich, Stiftung Rübel, No. 59.

  • Braun-Blanquet J. 1932. Zur Kenntnis nordschweizerischer Waldgesellschaften. Beih. Bot. Cbl. 49: 7–42.

    Google Scholar 

  • Bray J. R. 1956. Gap-phase replacement in a maple-basswood forest. Ecology 37: 598–600.

    Google Scholar 

  • Clements F. E. 1936. Nature and structure of the climax. J. Ecol. 24: 252–284.

    Google Scholar 

  • Curtis J. T. 1959. The vegetation of Wisconsin. Univ. of Wisconsin Press, Madison.

    Google Scholar 

  • Dale, V. H. & Hemstrom, M. 1984. CLIMACS: A computer model of forest stand development for Western Oregon and Washington. Res. Paper PNW-327. Pacific Northwest Forest and Range Experiment Station. USDA, Forest Service.

  • Dale V. H. & Gardner R. H. 1987. Assessing regional impacts of growth declines using a forest succession model. J. Environ. Manage. 24: 83–93.

    Google Scholar 

  • Dale V. H., Doyle T. W. & Shugart H. H. 1985. A comparison of tree growth models. Ecol. Modelling 29: 145–169.

    Google Scholar 

  • Ek A. R. & Monserud R. A. 1979. Performance and comparison of tree and diameter class stand growth models. Can. J. For. Res. 9: 231–244.

    Google Scholar 

  • Ellenberg, H. 1979. Zeigerwerte der Gefässpflanzen Mitteleuropas. 2. ed. Scripta Geobotanica 9, Göttingen.

  • Ellenberg H. 1982 Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. 3 ed. Ulmer, Stuttgart.

    Google Scholar 

  • Ellenberg H. & Klötzli F. 1972. Waldgesellschaften und Waldstandorte der Schweiz. Eidg. Anst. forstl. Versuchswes. Mitt. 48: 589–930.

    Google Scholar 

  • Engler A. 1901. Über Verbreitung, Standortsansprüche und Geschichte der Castanea vesca Gärtner mit besonderer Berücksichtigung der Schweiz. Ber. Schweiz. Bot. Ges. 11: 1–40.

    Google Scholar 

  • Finegan B. 1984. Forest succession. Nature (London) 312: 109–114.

    Google Scholar 

  • Firbas F. 1952. Spät-und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. Vol. 2. Fischer, Jena.

    Google Scholar 

  • Forman R. T. T. & Godron M. 1981. Patches and structural components for a landscape ecology. BioScience 31: 733–740.

    Google Scholar 

  • Fries J. (ed.) 1974. Growth models for tree and stand simulation. Res. Notes 30, Department of Forest Yield Research, Royal College of Forestry, Stockholm.

    Google Scholar 

  • Hasse W. D. & Ek A. R. 1981. A simulated comparison of yields for even- versus uneven-aged management of northern hard-wood stands. J. Environ. Manage. 12: 235–246.

    Google Scholar 

  • Hegg O. 1980. Die heutige Pflanzenwelt der Region Biel. Jahrb. Geogr. Ges. Bern 53: 43–70.

    Google Scholar 

  • Hesmer H. & Schroeder F. G. 1963. Waldzusammensetzung und Waldbehandlung im Niedersächsischen Tiefland westlich der Weser und in der Münsterschen Bucht bis zum Ende des 18. Jahrhunderts. Decheniana (Bonn), Beih. 11: 1–304.

    Google Scholar 

  • Jankuhn H. 1969. Vor-und Frühgeschichte vom Neolithikum bis zur Völkerwanderungszeit. Ulmer, Stuttgart.

    Google Scholar 

  • Kienast F. 1987. FORECE — a forest succession model for southern Central Europe. Report ORNL/TM-10575. Environmental Sciences Division. Publication No. 2989, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

    Google Scholar 

  • Leemans R. & Prentice I. C. 1987. Description and simulation of tree-layer composition and size distribution in a primaeval Picea-Pinus forest. Vegetatio 69: 147–156.

    Google Scholar 

  • Lüdi, W. 1935. Das Grosse Moos im westschweizerischen See-lande un die Geschichte seiner Entstehung. Veröff. Geobot. Inst. ETH Zürich, Stiftung Rübel, No. 11.

  • McIntosh R. P. 1981. Succession and ecological theory. In: West D. C., Shugart H. H. & Botkin D. B. (eds.), Forest succession: concepts and applications, pp. 10–23. Springer, New York.

    Google Scholar 

  • McLaughlin, S. B., West, D. C., Shugart, H. H. & Shriner, D. S. 1978. Air pollution effects on forest growth and succession: Applications of a mathematical model. In: Cooper, H. B. H. (ed.), Proc. 71st Annual Meeting of the Air Control Association, pp. 1–16.

  • Mielke D. L., Shugart H. H. & West D. C. 1978. A stand model for uplands forests of southern Arkansas. Report ORNL/TM-6225. Environmental Sciences Div. Publication No. 1134, Oak Ridge National Laboratory, Oak Ridge, TN 37831.

    Google Scholar 

  • Mitscherlich G. 1970. Wald, Wachstum und Umwelt. Eine Einführung in die ökologischen Grundlagen des Waldwachstums. Sauerländer, Frankfurt a.M.

    Google Scholar 

  • Moor, M. 1952. Die Fagion-Gesellschaften im Schweizer Jura. Beitr. geobot. Landesaufn. Schweiz 31.

  • Mraz K. & Sika A. 1965. Böden und Vegetation der Auewaldstandorte. Feddes Rep. Beih. 142: 5–64.

    Google Scholar 

  • Pastor J. & Post W. M. 1985. Development of a linked forest productivity-soil process model. Report ORNL/TM-9519. Environmental Sciences Division Publication 2455, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

    Google Scholar 

  • Poissonet P., Romane F., Austin M. P., van der Maarel E. & Schmidt W. 1981. Vegetation dynamics in grasslands, heathlands and mediterranean ligneous formations. Vegetatio 46/47: 1–283.

    Google Scholar 

  • Schmid E. 1949. Vegetationskarte der Schweiz. Pflanzengeo-graphische Kommission Naturforschende Ges. Schweiz, Bern.

    Google Scholar 

  • Schmithüsen, J. 1934. Der Niederwald des links-rheinischen Schiefergebirges. Beitr. Landeskunde Rheinlande 4.

  • Shugart H. H. 1984. A theory of forest dynamics, Springer, New York.

    Google Scholar 

  • Shugart H. H. & West D. C. 1977. Development of an Appalachian forest succession model and its application to assessment of the impact of the chestnut blight. J. Environ. Manage. 5: 161–179.

    Google Scholar 

  • Shugart H. H. & West D. C. 1980. Forest succession models. BioScience 30: 308–313.

    Google Scholar 

  • Shugart H. H. & West D. C. 1981. Long-term dynamics of forest ecosystems. Amer. Sci. 69: 647–652.

    Google Scholar 

  • Shugart H. H. & Noble I. R. 1981. A computer model of succession and fire response of the high-altitude Eucalyptus forest of the Brindabella Range, Australian Capital Territory. Austr. J. Ecol. 6: 149–164.

    Google Scholar 

  • Shugart H. H. & Emanuel W. R. 1985. Carbon dioxide increase: the implications at the ecosystem level. Plant Cell Environment 8: 381–386.

    Google Scholar 

  • Slatyer R. O. 1977. Dynamic changes in terrestrial ecoystems: patterns of change, techniques for study and applications to management. MAB Technical Notes 4, UNESCO, Paris.

    Google Scholar 

  • Solomon A. M. & Shugart H. H. 1984. Integrating forest-stand simulations with paleoecological records to examine long-term forest dynamics. In: Ågren G. I. (ed.), State and change of forest ecosystems — Indicators in current research, pp. 333–356, Swed. Univ. Agric. Sci., Uppsala, Sweden.

    Google Scholar 

  • Solomon A. M. & Webb T. 1985. Computer-aided reconstruction of late-quaternary landscape dynamics. Ann. Rev. Ecol. Syst. 16: 63–84.

    Google Scholar 

  • Solomon A. M. 1986. Transient response of forests to CO2 induced climate change: simulation modeling experiments in eastern North American. Oecologia (Berlin) 68: 567–579.

    Google Scholar 

  • Stein N. 1978. Die standörtliche Verbreitung und klimaökologische Abgrenzung waldbildender submediterraner (Quercus pubescens), subborealer (Pinus silvestris) und mitteleuropäisch-montaner Florenelemente (Abies alba) am Beispiel des mittleren Wallis (Zentralalpen). Geogr. Helv. 33: 93–112.

    Google Scholar 

  • Trepp, W. 1947. Der Lindenmischwald (Tilieto-Asperuletum taurinae) des schweizerischen voralpinen Föhn- und Seenbezirkes und seine pflanzensociologische und forstliche Bedeutung. Beitr. geobot. Landesaufn. Schweiz 27.

  • Usher M. B. 1981. Modelling ecological succession with particular reference to Markovian models. Vegetatio 46: 11–18.

    Google Scholar 

  • van Hulst R. 1980. Vegetation dynamics or ecosystem dynamics: dynamic sufficiency in succession theory. Vegetatio 43: 147–151.

    Google Scholar 

  • Walter H. 1985. Ecological principles in global perspectives. Springer, New York.

    Google Scholar 

  • Watt A. S. 1947. Pattern and process in the plant community. J. Ecol. 35: 1–22.

    Google Scholar 

  • West D. C., McLaughlin S. B. & Shugart H. H. 1980. Simulated forest response to chronic air pollution stress. J. Environ. Qual. 9: 43–49.

    Google Scholar 

  • West D. C., Shugart H. H. & Botkin D. B. (eds) 1981. Forest succession: concepts and applications. Springer, New York.

    Google Scholar 

  • Winkler O. 1933. Forstgeschichtlich bedingte Wandlungen in den Gebirgswäldern des St. Galler Oberlandes. Schweiz. Z. Forstwes. 84: 109–120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kienast, F., Kuhn, N. Simulating forest succession along ecological gradients in southern Central Europe. Vegetatio 79, 7–20 (1988). https://doi.org/10.1007/BF00044844

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00044844

Keywords

Navigation