Skip to main content

Global solution to the incompressible viscous-multipolar material problem

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


In the paper we give a proof of the global existence of the weak solution to the initial-boundary-value problem describing an incompressible elasto-viscous-multipolar material in finite geometry. A brief introduction to the physical background of viscous-multipolar materials is given. We suggest the hypothesis

% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaaxadabaGaeu4OdmfaleaacaWGPbGaaiilaGqaciaa-bcacaWG% QbGaa8hiaiabg2da9iaa-bcacaaIXaaabaGaaG4maaaakiaa-bcada% abdiqcaasaaOWaaSaaaKaaGeaacqGHciITcqqHOoqwcaGGOaGaamOr% aiaacYcacqaH4oqCcaGGPaaabaGaeyOaIyRaamOraOWaaSbaaSqaai% aadMgacaWGbbaabeaaaaqcaaIaa8hiaiaadAeakmaaBaaaleaacaWG% QbGaamyqaaqabaaajaaqcaGLhWUaayjcSdGaa8hiaiabgsMiJkaado% gakmaaBaaaleaacaWFVbaabeaakiaadwgacaGGOaGaamOraiaacYca% ieaacaGFGaGaeqiUdeNaaiykaiaa+bcacqGHRaWkcaGFGaGaam4yam% aaBaaaleaacaaIXaGaa4hiaiaacYcaaeqaaaaa!686E!\[\mathop \Sigma \limits_{i, j = 1}^3 \left| {\frac{{\partial \Psi (F,\theta )}}{{\partial F_{iA} }} F_{jA} } \right| \leqslant c_o e(F, \theta ) + c_{1 ,} \] which enables one to obtain a priori estimates.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. Ball, Minimizers and Euler-Lagrange Equation. Lecture Notes in Physics, Berlin: Springer (1984).

    Google Scholar 

  2. 2.

    P. Chadwick, Continuum Mechanics. London: George Allen & Unwin Ltd. (1976).

    Google Scholar 

  3. 3.

    A.E. Green and R.S. Rivlin, Simple force and stress multipoles. Arch. Rational Mech. Anal. 16 (1964) 325–353.

    Google Scholar 

  4. 4.

    J. Kurzweil, Ordinary Differential Equations (in Czech). Praha: SNTL (1976).

    Google Scholar 

  5. 5.

    O.A. Ladyshenskaya, V.A. Solonnikov, N.N. Uraltzeva, Linear and Quasilinear Parabolic Equations (in Russian). Moskva: Mir (1967).

    Google Scholar 

  6. 6.

    J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equations, Leipzig: Teubner (1983).

    Google Scholar 

  7. 7.

    J. Nečas, A. Novotný and M. Šilhavý, Global solution to the compressible isothermal multipolar fluid. J. Math. Ana. Appl. 162 (1991) 223–241.

    Google Scholar 

  8. 8.

    J. Nečas and M. Šilhavý, Multipolar viscous fluids. Quant. Appl. Math. 49 (1991) 247–265.

    Google Scholar 

  9. 9.

    A.J.M. Spencer, Theory of Invariants. New York: Academic Press (1971).

    Google Scholar 

  10. 10.

    C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics, Handbuch der Physik III/3. Berlin: Springer (1965).

    Google Scholar 

  11. 11.

    E. Zeidler, Nonlinear Functional Analysis 1. Berlin: Springer (1988).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nečas, J., Růžička, M. Global solution to the incompressible viscous-multipolar material problem. J Elasticity 29, 175–202 (1992).

Download citation

Key words

  • viscous-multipolar materials
  • a priori estimates
  • global existence

AMS classification

  • 35B45
  • 35G25
  • 35G30
  • 73B05
  • 73B25
  • 73G15