Skip to main content
Log in

A review of some integral equations for solving the Saint-Venant torsion problem

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Summary

It has been attempted to write down a complete collection of integral equations and functional equations for solving the classical Saint-Venant's torsion problem, to a large extent using Green's third identity and a unified notation for the systematic compilation. Some of the equations are well known, others seem to be new. Nearly all the equations are interpreted physically. Known and unknown connections among the equations are pointed out.

Zusammenfassung

Es wird hier der Versuch gemacht ein vollständiges Verzeichnis von Integralgleichungen und Funktionalgleichungen zur Lösung des klassischen Saint-Venant'schen Torsionsproblems aufzustellen-weitgehend mit Hilfe der dritten Green'schen Identität und unter Verwendung einheitlicher Bezeichnungen, um dadurch eine systematische Zusammenstellung zu erreichen. Einige von diesen Gleichungen sind wohlbekannt-andere dagegen werden hier vermutlich zuerst angegeben; beinahe alle Gleichungen werden physikalisch gedeutet. Bekannter und unbekannter Beziehungen zwischen den Gleichungen sind angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksidze, M. A., On Approximate Solutions of a Certain Mixed Boundary Value Problem in the Theory of Harmonic Functions,Differential Equations 2 (1966) 515–518. (Differentsial'nye Uravneniya 2 (1966) 988–994).

    Google Scholar 

  2. Bhargava, R. D. and Saxena, R. S., Integral Equation Method of solving Two-dimensional Laplace Equation-I,Indian Jour. Pure Appl. Math. 1 (1970) 552–564.

    Google Scholar 

  3. Bhargava, R. D. and Saxena, R. S., Integral Equation Method of solving Two-dimensional Laplace Equation-II,Indian Journ. Pure Appl. Math. 2 (1971) 246–256.

    Google Scholar 

  4. Christiansen, S., On Kupradze's Functional Equations for Plane Harmonic Problem, pp. 205–243 in: R. P. Gilbert and R. Weinacht (eds.),Function Theoretic Methods in Differential Equations, Research Notes in Mathematics, No. 8, Pitman Publishing, London, September 1976.

    Google Scholar 

  5. Christiansen, S., Integral Equations without a Unique Solution can be made Useful for Solving some Plane Harmonic Problems,Jour. Inst. Math. Appl. 16 (1975) 143–159.

    Google Scholar 

  6. Christiansen, S., In preparation 1977.

  7. Courant, R. and Hilbert, D.,Methods of Mathematical Physics, Vol. II (Partial Differential Equations, R. Courant), Interscience Publishers, New York, 1962.

    Google Scholar 

  8. Filonenko-Borodich, M.,Theory of Elasticity, Dover Publications, New York, 1965.

    Google Scholar 

  9. Harrington, R. F., Pontoppidan, K., Abrahamsen, P., and Albertsen, N. C., Computation of Laplacian Potentials by an Equivalent-Source Method,Proc. Instn. Elect. Engrs. 116 (1969) 1715–1720.

    Google Scholar 

  10. Hayes, J. and Kellner, R., The Eigenvalue Problem for A Pair of Coupled Integral Equations Arising in the Numerical Solution of Laplace's Equation,SIAM Jour. Appl. Math. 22 (1972) 503–513.

    Google Scholar 

  11. Hille, E.,Analytic Function Theory, Vol. II, Ginn and Company, Boston, 1962.

    Google Scholar 

  12. Hönl, H., Maue, A. W., and Westpfahl, K., Theorie der Beugung, pp. 218–573 in: S. Flügge (ed.),Handbuch der Physik, Band XXV/1, Kristalloptik, Beugung, Springer-Verlag, Berlin, 1961.

    Google Scholar 

  13. Hsiao, G. and MacCamy, R. C., Solution of Boundary Value Problems by Integral Equations of the First Kind,SIAM Review 15 (1973) 687–705.

    Google Scholar 

  14. Jaswon, M. A. and Ponter, A. R., An integral equation solution of the torsion problem,Proc. Roy. Soc. London, Ser, A 273 (1963) 237–246.

    Google Scholar 

  15. Kandler, P., Numerische Behandlung des SAINT-VENANTschen Torsionsproblems bei beliebigen Querschnittsbereichen mit Hilfe von Integralgleichungen,Monatsber. Deutschen Akad. Wiss. Berlin 9 (1967) 637–649.

    Google Scholar 

  16. Kanwal, R. P.,Linear Integral Equations, Theory and Technique, Academic Press, New York, 1971.

    Google Scholar 

  17. Kermanidis, Th., Ein Beitrag zur Torsion prismatischer Stäbe,Zeit. Angew. Math. Mech. 54 (1974) T87-T88.

    Google Scholar 

  18. Kermanidis, Th., Kupradze's functional equation for the torsion problem of prismatic bars-Part 1, Computer methods in applied mechanics and engineering 7 (1976a) 39–46.

    Google Scholar 

  19. Kermanidis, Th., Kupradze's functional equation for the torsion problem of prismatic bars-Part 2, Computer methods in applied mechanics and engineering 7 (1976b) 249–259.

    Google Scholar 

  20. Kupradze, V. D.,Dynamical Problems in Elasticity (in Progress in Solid Mechanics, III; eds. J. N. Sneddon and R. Hill), North-Holland, Amsterdam, 1963.

    Google Scholar 

  21. Kupradze, V. D.,Potential Methods in the Theory of Elasticity, Israel Program for Scientific Translations, Jerusalem, 1965. (Metody potentsiala v teorii uprugosti, Gosudarstvennoe Izdatel'stvo Fiziko-Matematicheskoi Literatury, Moskva 1963).

    Google Scholar 

  22. Kupradze, V. D., On the approximate solution of problems in mathematical physics,Russian Math. Surveys 22, 2 (1967) 58–108. (Uspehi Mat. Nauk 22, 2 (1967) 59–107).

    Google Scholar 

  23. Kupradze, V. D., Über numerische Verfahren der Potential- und der Elastizitätstheorie,Zeit. Angew. Math. Mech. 49 (1969) 1–9.

    Google Scholar 

  24. Kupradze, V. D. and Aleksidze, M. A., The Method of Functional Equations for the Approximate Solution of Certain Boundary Value Problems,U.S.S.R. Computational Math. and Math. Physics 4, 4 (1964) 82–126. (Z. Vyčisl. Mat. i Mat. Fiz. 4 (1964) 683–715).

    Google Scholar 

  25. Kupradze, V. D., Gegelia, T. G., Baselejsvili, M. O., and Burculadze, T. V.,Trechmernye Zadaci Matematiceskoj Teorii Uprugosti, Izdatel'stvo Tbilisskogo Universiteta, Tbilisi, 1968.

    Google Scholar 

  26. Lawrentjew, M. A. and Schabat, B. W.,Methoden der komplexen Funktionen-theorie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1967.

    Google Scholar 

  27. Lo, C. C. and Niedenfuhr, F. W., Singular Integral Equation Solution for Torsion, Proc. Amer. Soc. Civil Eng.,Jour. Engng. Mech. Div. 96 EM 4 (1970) 535–542.

    Google Scholar 

  28. Maue, A.-W., Zur Formulierung eines allgemeinen Beugungsproblems durch eine Integralgleichung,Zeit. Physik 126 (1949) 601–618.

    Google Scholar 

  29. Mendelson, A., Boundary-integral methods in elasticity and plasticity, NASA TN D-7418 (1973), 37 pp.

  30. Mikhlin, S. G.,Integral Equations and their applications, 2nd rev. ed., Pergamon Press, Oxford, 1964.

    Google Scholar 

  31. Muschelischwili, N. I.,Singuläre Integralgleichungen, Akademie-Verlag, Berlin, 1965.

    Google Scholar 

  32. Muskhelishvili, N. I.,Some Basic Problems of the Mathematical Theory of Elasticity, 2nd English ed., P. Noordhoff, Groningen, 1963.

    Google Scholar 

  33. Osgood, W. F.,Lehrbuch der Funktionentheorie, erster Bd., zweite Aufl., B. G. Teubner, Leipzig, 1912.

    Google Scholar 

  34. Polozhiy, G. N.,Equations of Mathematical Physics, Hayden Book Company, New York, 1967.

    Google Scholar 

  35. Pólya, G. and Szegö, G. Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen,Jour. Reine Angew. Math. 165 (1931) 4–49.

    Google Scholar 

  36. Pólya, G. and Szegö, G.,Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, 1951.

    Google Scholar 

  37. Ponter, A. R. S., On plastic torsion,International Journal of Mechanical Sciences 8 (1966a) 227–235.

    Google Scholar 

  38. Ponter, A. R. S., An Integral Equation Solution of the Inhomogeneous Torsion Problem.SIAM Jour. Appl. Math. 14 (1966b) 819–830.

    Google Scholar 

  39. Rieder, G., Iterationsverfahren und Operatorgleichungen in der Elastizitätstheorie,Abh. Braunschweig. Wiss. Gesellsch. 14, zweiter Halbband (1962) 109–343.

    Google Scholar 

  40. Rieder, G., Eine Variante zur Integralgleichung von Windisch für das Torsionsproblem,Zeit. Angew. Math. Mech. 49 (1969) 351–358.

    Google Scholar 

  41. Rizzo, F. J., An integral equation approach to boundary value problems of classical elastostatics,Quart. Appl. Math., 25 (1967) 83–95.

    Google Scholar 

  42. Sokolnikoff, I. S.,Mathematical Theory of Elasticity, 2nd ed., McGraw-Hill, New York, 1956.

    Google Scholar 

  43. Timoshenko, S. and Goodier, J. N.,Theory of Elasticity, 2nd ed., McGraw-Hill, New York, 1951.

    Google Scholar 

  44. Vekua, I. N.,New Methods for Solving Elliptic Equations, North-Holland, Amsterdam, 1967.

    Google Scholar 

  45. Windisch, E., Eine neue allgemeine Methode zur Lösung des Torsions problems,Wiss. Zeit. Techn. Univ. Dresden 15 (1966) 685–688.

    Google Scholar 

  46. Windisch, E., Eine numerische Methode zur Lösung des Torsionsproblems, I,Acta Mechanica 4 (1967) 191–199.

    Google Scholar 

  47. Windisch, E., Eine numerische Methode zur Lösung des Torsionsproblems, II,Acta Mechanica 10 (1970) 181–191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The present work is partly based upon material which was compiled for an invited lecture give on July 3, 1975 at the Institute of Technical Mechanics, The Technical University of Aachen, The Federal Republic of Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christiansen, S. A review of some integral equations for solving the Saint-Venant torsion problem. J Elasticity 8, 1–20 (1978). https://doi.org/10.1007/BF00044507

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00044507

Keywords

Navigation