Skip to main content
Log in

Structural and functional characteristics of epiphyton and epipelon in relation to their distribution in Lake Vechten

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Epiphyton and epipelon were quantitatively collected, respectively, from the submerged macrophytes and the sandy lake bottom of Lake Vechten (The Netherlands). On a weight basis, epiphyton was maximal in autumn and epipelon in summer. In winter the chemical composition of epiphyton and epipelon was similar. In summer the epiphyton had on a unit weight basis more organic matter and carbonate, and had per unit organic matter a higher algal number, nitrogen and energy content than the epipelon. Algae predominating the epiphyton were filamentous greens and pennate diatoms; those in the epipelon were pennate diatoms and blue-green algae. In both cases, species known to frequent the phytoplankton were abundant. The diatoms were quantified using paper chromatographic pigment analyses. Both the epiphyton and the epipelon exhibited maximal photosynthesis in mid summer. That light was generally the limiting factor was evident from periphyton developed on artificial substrates. This periphyton differed widely in its composition from that on the natural substrates, mainly because the latter collected much more sedimenting matter.

In dense Ceratophyllum stands light was severely attenuated and the significant gradients in oxygen and pH were caused by the differences with depth in the proportions of photosynthesis and respiration. The oxygen content and pH at the bottom decreased owing to epipelic respiration. The epiphytic composition depended greatly on the degree of light attenuation. The epiphytic and epipelic respiration, except during part of the early summer, exceeded photosynthesis on a 24 h basis; this included the macrophytic photosynthesis during the time the vegetation was maximally developed. During the growing season import of organic matter, i.e. deposited seston, greatly exceeded that due to the photosynthetic production. After the summer maximum, the epipelon decreased faster than predicted from its oxygen exchange. It was concluded that sedimentation and resuspension determined mainly the changes in epiphyton and epipelon. Especially when covered with vegetation, the lower littoral of Lake Vechten plays a large part in the aerobic decomposition of sestonic organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Admiraal, W., 1977. Salinity tolerance of benthic estuarine diatoms as tested with a rapid polarographic measurement of photosynthesis. Mar. Biol. 39: 11–18.

    Google Scholar 

  • Admiraal, W. & Peletier, H., 1979. Influence of organic compounds and light limitation on the growth of estuarine benthic diatoms. Br. phycol. J. 14: 197–206.

    Google Scholar 

  • Allanson, B. R., 1973. The fine structure of the periphyton of Chara sp. and Potamogeton natans from Wytham Pond, Oxford, and its significance to the macrophyte-periphyton metabolic model of R. G. W etzel and H. L. Allen. Freshwat. Biol. 3: 535–541.

    Google Scholar 

  • Allen, H. L., 1971. Primary productivity, chemo-organotrophy and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake. Ecol. Monogr. 41: 97–127.

    Google Scholar 

  • Best, P. H., 1979. Ecophysiological studies on growth and development of the aquatic macrophyte Ceratophyllum demersum L. Thesis, State University of Utrecht. 104 pp.

  • Best, P. H., 1982. The aquatic macrophytes of Lake Vechten. Species composition, spatial distribution and production. Hydrobiologia 95: 65–77.

    Google Scholar 

  • Blaauboer, M. C. I., 1982. The phytoplankton species composition and the seasonal periodicity in Lake Vechten from 1956 to 1979. Hydrobiologia 95: 25–36.

    Google Scholar 

  • Buscemi, P. A., 1958. Littoral oxygen depletion produced by a cover of Elodea canadensis. Oikos 9: 239–245.

    Google Scholar 

  • Cappenberg, Th. E. & Verdouw, H., 1982. Sedimentation and breakdown kinetics of organic matter in the anaerobic zone of Lake Vechten. Hydrobiologia 95: 165–179.

    Google Scholar 

  • Castenholz, R. W., 1960. Seasonal changes in the attached algae of freshwater and saline lakes in the lower Grand Coulee, Washington. Limnol. Oceanogr. 5: 1–28.

    Google Scholar 

  • Cattaneo, A., 1978. The microdistribution of epiphytes on the leaves of natural and artificial macrophytes. Br. phycol. J. 13: 183–188.

    Google Scholar 

  • Cattaneo, A., Ghittori, S. & Vendegra, V., 1975. The development of benthic phytocoenosis on artificial substrates in the Ticino River. Oecologia 19: 315–327.

    Google Scholar 

  • Cattaneo, A. & Kalff, J., 1980. The relative contribution of aquatic macrophytes and their epiphytes to the production of macrophyte beds. Limnol. Oceanogr. 25: 280–289.

    Google Scholar 

  • Cholnoky, B. J., 1968. Die Okologie der Diatomeen in Binnengewassern. Cramer, Lehre, 699 pp.

    Google Scholar 

  • Dvořák, J. & Best, P. H., 1982. Macro-invertebrate communities associated with water vegetation in Lake Vechten. Hydrobiologia 95: 115–126.

    Google Scholar 

  • Eminson, D. & Phillips, G., 1978. A laboratory experiment to examine the effects of nutrient enrichment on macrophyte and epiphyte growth. Verh. int. Verein. Limnol. 20: 82–87.

    Google Scholar 

  • Fitzgerald, G. P., 1969. Some factors in the competition or antagonism between bacteria, algae and aquatic weeds. J. Phycol. 5: 351–359.

    Google Scholar 

  • Gons, H. J. & Mur, L. R., 1980. Energy requirements for growth and maintenance of Scenedesmus protuberans Fritsch in light-limited continuous cultures. Arch. Microbiol. 125: 9–17.

    Google Scholar 

  • Gulati, R, D., Siewertsen, K. & Postema, G., 1982. The zooplankton: its community structure, food and feeding, and role in the ecosystem of Lake Vechten. Hydrobiologia 95: 127–163.

    Google Scholar 

  • Hager, A. & Stransky, H., 1970a. Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xantophyll-cyclus in verschiedenen Algenklassen. III. Grünalgen. Arch. Mikrobiol. 72: 68–83.

    Google Scholar 

  • Hager, A. & Stransky, H., 1970b. Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyll-cyclus in verschiedenen Algenklassen. V. Einzelne Vertreter der Cryptophyceae, Euglenophyceae, Bacillariophyceae, Chrysophyceae and Phaeophyceae. Arch. Mikrobiol. 73: 77–89.

    Google Scholar 

  • Hallegraeff, G. M., 1976. Pigment diversity, biomass and species diversity of phytoplankton of three Dutch lakes. Thesis, University of Amsterdam. 177 pp.

  • Harris, G. P., 1978. Photosynthesis, productivity and growth: The physiological ecology of phytoplankton. Arch. Hydrobiol. Beih. 10: 1–171.

    Google Scholar 

  • Hellebust, J. A. & Lewin, J., 1977. Heterotrophic nutrition. In: Werner, D. (Ed.) The Biology of Diatoms. Blackwell, Oxford. 288 pp.

    Google Scholar 

  • Hoek, C. van den, 1978. Algen. Einführung in die Phykologie. Thieme, Stuttgart. 481 pp.

    Google Scholar 

  • Hooper, N. M. & Robinson, G. G. C., 1976. Primary production of epiphytic algae in a marsh pond. Can. J. Bot. 54: 2810–2815.

    Google Scholar 

  • Hooper-Reid, N. M. & Robinson, G. G. C., 1978. Seasonal dynamics of epiphytic algal growth in a marsh pond: productivity, standing crop, and community composition. Can. J. Bot. 56: 2434–2440.

    Google Scholar 

  • Hutchinson, G. E., 1975. A Treatise on Limnology. III. Limnological Botany. Wiley, New York. 660 pp.

    Google Scholar 

  • Iwamura, T., Nagai, H. & Ichimura, S., 1970. Improved methods for determining contents of chlorophyll, protein, ribonucleic acids and deoxyribonucleic acid in planktonic populations. Int. Rev. ges. Hydrobiol. 55: 131–147.

    Google Scholar 

  • Jeffrey, S. W., 1961. Paper chromatographic separation of chloropht Its and carotenoids from marine algae. Biochem. J. 80: 336–342.

    Google Scholar 

  • Jeffrey, S. W., 1968. Quantitative thin-layer chromatography of chlorophylls and carotenoids from marine algae. Biochim. Biophys. Acta 162: 271–285.

    Google Scholar 

  • Jensen, A. & Sakshaug, E., 1973. Studies on the phytoplankton ecology of the Trondheimsfjord. II. Chloroplast pigments in relation to abundance and physiological state of the phytoplankton. J. exp. mar. Biol. Ecol. 11: 137–155.

    Google Scholar 

  • Jones, R. C., 1980. Primary production, biomass, nutrient limitation, and taxonomic composition of algal communities epiphytic on the submersed macrophyte Myriophyllum spicatum L. in a hardwater, eutrophic lake. Thesis, University of Wisconsin-Madison. 200 pp.

    Google Scholar 

  • Jørgensen, E. G., 1969. The adaptation of plankton algae. IV. Light adaptation in different algal species. Physiol. Plant. 22: 1307–1315.

    Google Scholar 

  • Kajak, Z., Hillbricht-Ilkowska, A. & Pieczynska, E., 1972. The production in several Polish lakes. In: Kajak, Z. & Hillbrichtllkowska, A. (Eds.) Productivity Problems of Freshwaters. PWN Warszawa, 918 pp.

    Google Scholar 

  • Kloet, W. A. de, 1982. The primary production of phytoplankton in Lake Vechten. Hydrobiologia 95: 37–57.

    Google Scholar 

  • Madsen, B. L., 1972. Detritus on stones in small streams. Mem. Ist. ital. Idrobiol. 29: 385–403.

    Google Scholar 

  • Mann, K. H., 1975. Patterns of energy flow. In: Whitton, B. A. (Ed.) River Ecology. Blackwell, Oxford. 725 pp.

    Google Scholar 

  • Mason, C. F. & Bryant, R. J., 1975. Periphyton production and grazing by chironomids in Alderfen Broad, Norfolk. Freshwat. Biol. 5: 271–277.

    Google Scholar 

  • McMahon, R. F., Douglas-Hunter, R. & Russell-Hunter, W. D., 1974. Variation in Aufwuchs at six freshwater habitats in terms of carbon: nitrogen ratio. Hydrobiologia 45: 391–404.

    Google Scholar 

  • Milner, H. W., 1953. The chemical composition of algae. In: Burlew, J. S. (Ed.) Algal Culture from Laboratory to Pilot Plant. Carnegie Inst., Washington, D. C. 357 pp.

    Google Scholar 

  • Moss, B., 1968. The chlorophyll a content of some benthic algal communities. Arch. Hydrobiol. 65: 51–62.

    Google Scholar 

  • Odum, E. P., 1971. Fundamentals of Ecology. Saunders, Philadelphia. 574 pp.

    Google Scholar 

  • Parsons, T. R., Takahashi, M. & Hargrave, B., 1977. Biological Oceanographic Processes. Pergamon, Oxford. 332 pp.

    Google Scholar 

  • Perkins, M. A. & Kaplan, L. A., 1978. Epilithic periphyton and detritus studies in a subalpine stream. Hydrobiologia 57: 103–109.

    Google Scholar 

  • Phillips, G. L., Eminson, D. & Moss, B., 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.

    Google Scholar 

  • Pieczynska, E., 1975. Ecological interactions between land and the littoral zones of lakes (Masurian Lakeland, Poland). In: Hasler, A. D. (Ed.) Coupling of Land and Water Systems. Springer, Berlin. 309 pp.

    Google Scholar 

  • Round, F. E., 1973. The Biology of the Algae. Edward Arnold, London. 278 pp.

    Google Scholar 

  • Russell-Hunter, W. D., 1970. Aquatic Productivity. Macmillan, New York. 306 pp.

    Google Scholar 

  • Saunders, G. W., Cummins, K. C. & Gak, D. Z. et al., 1980. Organic matter and decomposers. In: Le Cren, E. D. & Lowe-McConnell, R. H. (Eds.) The Functioning of Freshwater Ecosystems. Cambridge University Press, Cambridge. 588 pp.

    Google Scholar 

  • Siver, P. A., 1977. Comparison of attached diatom communities on natural and artificial substrates. J. Phycol. 13: 402–406.

    Google Scholar 

  • Sladeckova, A., 1962. Limnological investigation methods for the periphyton (‘Aufwuchs’) community. Bot. Rev. 28: 286–350.

    Google Scholar 

  • Sládeček, V. & Sladeckova, A., 1964. Determination of periphyton production by means of the glass slide method. Hydrobiologia 23: 125–128.

    Google Scholar 

  • Spodniewska, I., Pieczynska, E. & Kowalczewski, A., 1975. Ecosystem of the Mikolajskie Lake, primary production. Pol. Arch. Hydrobiol. 22: 17–37.

    Google Scholar 

  • Spoehr, H. A. & Milner, H. W., 1949. The chemical composition of Chlorella: effects of environmental conditions. Plant Physiol. 24: 120–149.

    Google Scholar 

  • Steemann Nielsen, E., 1975. Marine Photosynthesis, with Special Emphasis on the Ecological Aspects. Elsevier, Amsterdam. 141 pp.

    Google Scholar 

  • Steenbergen, C. L. M. & Verdouw, H., 1982. Lake Vechten: aspects of its morphometry, climate, hydrology and physicochemical characteristics. Hydrobiologia 95: 11–23.

    Google Scholar 

  • Stockner, J. G. & Armstrong, F. A. J., 1971. Periphyton of the experimental lakes area, Northwestern Ontario. J. Fish. Res. Bd Can. 28: 215–229.

    Google Scholar 

  • Strathmann, R. R., 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411–418.

    Google Scholar 

  • Tippett, R., 1970. Artificial surfaces as a method of studying populations of benthic microalgae in freshwater. Br. phycol. J. 5: 187–199.

    Google Scholar 

  • Verdouw, H. & Dekkers, E. M. J., 1982. Nitrogen cycle of Lake Vechten (The Netherlands); role of sedimentation. Arch. Hydrobiol. 94: 251–263.

    Google Scholar 

  • Weber, C., 1973. Research development in the measurement of the response of plankton and periphyton to changes in their environment. In: Glass, G. E. (Ed.) Bioassay Technique and Environmental Chemistry. Ann Arbor Science Publ. 499 pp.

  • Westlake, D. F., Adams, M. S. & Bindloss, M. E. et al., 1980. Primary production. In: Le Cren, E. D. & Lowe-McConnell, R. H. (Eds.) The Functioning of Freshwater Ecosystems. Cambridge University Press, Cambridge. 588 pp.

    Google Scholar 

  • Wetzel, R. G., 1975. Limnology. Saunders, Philadelphia. 743 pp.

    Google Scholar 

  • Wetzel, R. G. & Allen, H. L., 1972. Functions and interactions of dissolved organic matter and the littoral zone in lake metabolism and eutrophication. In: Kajak, Z. & Hillbricht-Ilkowska, A. (Eds.) Productivity Problems of Freshwaters. PWN, Warszawa. 918 pp.

    Google Scholar 

  • Wetzel, R. G., Rich, P. H., Miller, M. C. & Allen, H. L., 1972. Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake. Mem. Ist. ital. Idrobiol. 29: 185–243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gons, H.J. Structural and functional characteristics of epiphyton and epipelon in relation to their distribution in Lake Vechten. Hydrobiologia 95, 79–114 (1982). https://doi.org/10.1007/BF00044478

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00044478

Keywords

Navigation