Skip to main content
Log in

Fatigue crack layer propagation in polystyrene—Part I experimental observations

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Fatigue crack propagation experiments performed on thin, single edge notched, polystyrene specimens show that during slow crack propagation, an intensive zone of crazing surrounds and precedes the propagating crack. The system of the crack and the craze zone constitute a crack layer (CL). The part of the CL ahead of the crack tip, where crazing accumulates prior to CL growth, is called the active zone. The width of the active zone is found to increase by almost an order of magnitude during slow CL propagation. Fractographic analysis reveals two types of discontinuous crack growth bands: multicycle bands and single cycle bands. The point of transition from multicycle to single cycle bands is established and used to extract crack speed from fracture surface markings. The experimental results demonstrate that fracture propagates by the translation, isotropic expansion and distortion of the active zone. Analysis of craze distribution within the active zone reveals that the craze density decreases away from the crack. A considerable difference in the critical energy release rates is observed in specimens fatigued under different loading levels. This is attributed to the difference in the density of crazes at the critical crack tip.

Résumé

Des expériences de propagation de fissure de fatigue effectuées sur des éprouvette de polystyrène minces à simple entaille latérale, montrent que, au cours d'une propagation lente d'une fissure, une zone importante de crazing précède ete entoure la fissure. Le système de la fissure et de la zone de crazing constitue une couche fissurée CF. La portion de la CF qui précède l'extrémité de la fissure est dénommée la zone active, où s'accumule le crazing avant croissance de la CF. On trouve que la largeur de la zone ative s'accroit d'à peu près un ordre de grandeur au cours de la propagation lente de la CF. L'analyse fractographique révèle deux types de bandes révélatrices de la croissance de la fissure: des bandes correspondant à plusieurs cycles et des bandes correspondant à un seul cycle. On établit le point de transition entre ces deux types de bandes, et on en fait usage pour déduire la vitesse de la fissure à partir des indications émanant de la surface de la rupture. Les résultats expérimentaux démontrent que la rupture se propage par translation, par expansion isotrope et par distorsion de la zone active. L'analyse de la distribution du crazing dans la zone active révèle que la densité du crazing décroit lorsqu'on s'éloigne de la fissure. Une différence considérable de vitesse critique de relaxation de l'énergie est observée dans des éprouvettes sollicitées en fatigue à des niveaux de sollicitation distincts. Ceci est attribué aux différences de densité de crazing à l'extrémité critique de la fissure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Knott, Fundamentals of Fracture Mechanics, Butterworths, London (1973).

    Google Scholar 

  2. D. Broek, Elementary Engineering Fracture Mechanics, Martinus Nijhoff, The Hague (1982)

    Google Scholar 

  3. H. Tada, P.C. Paris and G.P. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, Pennsylvania (1975).

    Google Scholar 

  4. M. Bevis and D. Hull, Journal of Materials Science 5 (1970) 983–987.

    Google Scholar 

  5. A. Chudnovsky, Crack Layer Theory, NASA Report CR-174634, March (1984).

  6. A. Chudnovsky, Crack Layer Theory, Journal of Applied Mechanics, to appear.

  7. D.S. Dugdale, Journal of the Mechanics and Physics of Solids, 8 (1960) 100–104.

    Google Scholar 

  8. G.I. Barenblatt, in Advances in Applied Mechanics 1962, Vol. 67, Academic Press, New York (1962) 55–125.

    Google Scholar 

  9. G.M. Jacoby in Electron Microscopy, ASTM STP 453 (1969) 147–172.

  10. N.J. Mills and N. Walker, Journal of Materials Science 15 (1980) 1832–1840.

    Google Scholar 

  11. M. Kitagawa, Journal of Materials Science 17 (1982) 2514–2524.

    Google Scholar 

  12. K. Sehanobish, E. Baer, A. Chudnovsky and A. Moet, Journal of Materials Science 20 (1985) 1934–1939.

    Google Scholar 

  13. A. Moet, I. Palley and E. Baer, ACS Organic Coating and Plastics Chemistry 41 (1969) 424–429.

    Google Scholar 

  14. N. Haddaoui, A. Chudnovsky and A. Moet, ACS Organic Coating and Applied Polymer Science Proceedings 49 (1983) 117–123.

    Google Scholar 

  15. A. Chudnovsky, A. Moet, R.J. Bankart and M.T. Takemori, Journal of Applied Physics 54 (1983) 5562–5567.

    Google Scholar 

  16. M.P. Wnuk, International Journal of Fracture 10 (1974) 223–226.

    Google Scholar 

  17. J.G. Williams, Journal of Materials Science 12 (1977) 2525–2533.

    Google Scholar 

  18. J.P. Elink, J.C. Baumens and G. Howes, International Journal of Fracture Mechanics 7 (1971) 277–287.

    Google Scholar 

  19. H.R. Brown and I.M. Ward, Polymer 14 (1973) 69–473.

    Google Scholar 

  20. L. Lonzol, M.G. Schinker and W. Doll, in International Conference in Fatigue in Polymers, The Plastics and Rubber Institute, London (1983) 4.1–4.10.

    Google Scholar 

  21. J.S. Broderick, R.A. Duckett and I.M. Ward, in International Conference in Fatigue in Polymers, The Plastic and Rubber Insititue, London (1983) 5.1–5.9.

    Google Scholar 

  22. M. Skibo, R.W. Hertzberg and J.A. Manson, Journal of Materials Science 11 (1976) 479–490.

    Google Scholar 

  23. A. Moet, unpublished.

  24. C.J. Beevers, R.J. Cooke, J.F. Knott and R.O. Ritchie, Metal Science Journal 9 (1975) 119–126.

    Google Scholar 

  25. V. Hibino, S. Skaguchi and V. Tajima, Journal of Materials Science 2 (1983) 388–392.

    Google Scholar 

  26. S.C. Kinz and P.W.R. Beaumont, ASTM STP 569 (1975) 71–91.

  27. P.X. Nguyen, Master's thesis, Case Western Reserve University, Cleveland Ohio (1984).

  28. J. Botsis, Ph.D. dissertation, Case Western Reserve University Cleveland Ohio (1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botsis, J., Chudnovsky, A. & Moet, A. Fatigue crack layer propagation in polystyrene—Part I experimental observations. Int J Fract 33, 263–276 (1987). https://doi.org/10.1007/BF00044415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00044415

Keywords

Navigation