Skip to main content
Log in

The use of complex valued functions for the solution of three-dimensional elasticity problems

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

For the treatment of plane elasticity problems the use of complex functions has turned out to be an elegant and effective method. The complex formulation of stresses and displacements resulted from the introduction of a real stress function which has to satisfy the 2-dimensional biharmonic equation. It can be expressed therefore with the aid of complex functions. In this paper the fundamental idea of characterizing the elasticity problem in the case of zero body forces by a biharmonic stress function represented by complex valued functions is extended to 3-dimensional problems. The complex formulas are derived in such a way that the Muskhelishvili formulation for plane strain is included as a special case. As in the plane case, arbitrary complex valued functions can be used to ensure the satisfaction of the governing equations. Within the solution of an analytical example some advantages of the presented method are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Trefftz, Ein Gegenstück zum Ritzschen Verfahren, 2. Int. Kongr. f. Techn. Mechanik, Zürich 1926, 131–137.

  2. R. Piltner, Spezielle finite Elemente mit Löchern, Ecken und Rissen unter Verwendung von analytischen Teillösungen, Doctoral thesis, Ruhr-Universität Bochum, Fortschr.-Ber. VDI-Z, Reihe 1 Nr. 96, VDI-Verlag, Düsseldorf (1982).

  3. R. Piltner, Finite Elemente mit Ansätzen im Trefftz schen Sinne, In: Proc. of the Conference on “Finite Elemente-Anwendung in der Baupraxis”, (Eds. H. Grundmann, E. Stein, W. Wunderlich), TU München, March 1984, Verlag Wilhelm Ernst + Sohn, Berlin/München/Düsseldorf (1985).

    Google Scholar 

  4. R. Piltner, Special finite elements with holes and internal cracks,Int. J. Numer. Methods Eng. 21 (1985) 1471–1485.

    Google Scholar 

  5. K. Marguerre, Ansätze zur Lösung der Grundgleichungen der Elastizitätstheorie.ZAMM Bd. 35 Nr. 6/7 (1955) 242–263.

    Google Scholar 

  6. I.S. Sokolnikoff,Mathematical Theory of Elasticity. New York: McGraw Hill, (1956).

    Google Scholar 

  7. C.E. Pearson,Theoretical Elasticity. Cambridge: Harvard Univ. Press (1959).

    Google Scholar 

  8. H.G. Hahn,Elastizitätstheorie. Stuttgart: B.G. Teubner (1985).

    Google Scholar 

  9. H. Leipholz,Einführung in die Elastizitätstheorie, Karlsruhe: G. Braun-Verlag (1968).

    Google Scholar 

  10. S.P. Timoshenko and J.N. Goodier,Theory of Elasticity, New York: McGraw Hill (1951).

    Google Scholar 

  11. H. Neuber, Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie. Der Hohlkegel unter Einzellast als Beispiel.ZAMM 14 (1934) 203–212.

    Google Scholar 

  12. H. Neuber,Kerbspannungslehre, Berlin: Springer (1958).

    Google Scholar 

  13. P.F. Papkovich, Solution generale des equations differentielles fondamentales d elasticite, exprimee par trois fonctions harmoniques.C.R. Acad. Sci. Paris 195 (1932) 513–515.

    Google Scholar 

  14. M.E. Gurtin, The linear theory of elasticity. In: S. Flügge (ed.)Encylopedia of Physics, Vla/2, pp. 1–295, Berlin/Heidelberg/New York: Springer (1972).

    Google Scholar 

  15. N.I. Muskhelishvili,Some Basic Problems of the Mathematical Theory of Elasticity. Groningen, Noordhoff: (1953).

    Google Scholar 

  16. A.Ia. Aleksandrov, Solution of axisymmetric problems of the theory of elasticity with the aid of relations between axisymmetric and plane states of stress, PMM (J. of Appl. Math. and Mech.) 25 (1961) 1361–1375.

    Google Scholar 

  17. A.Ia. Aleksandrov and Ia.I. Solov'ev, One form of solution of three-dimensional axisymmetric problems of elasticity theory by means of functions of a complex variable and the solution of these problems for the sphere.PMM (J. of Appl. Math. and Mech.) 26 (1962) 188–198.

    Google Scholar 

  18. E.T. Whittaker and G.N. Watson,A Course of Modern Analysis, Cambridge University Press (1927).

  19. H. Bateman,Partial Differential Equations of Mathematical Physics, Cambridge University Press (1932).

  20. E.W. Hobson,The Theory of Spherical and Ellipsoidal Harmonics, Cambridge University Press (1931).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piltner, R. The use of complex valued functions for the solution of three-dimensional elasticity problems. J Elasticity 18, 191–225 (1987). https://doi.org/10.1007/BF00044194

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00044194

Keywords

Navigation