Skip to main content
Log in

Equilibrium of elastic rectangle: Mathieu-Inglis-Pickett solution revisited

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This paper addresses a general analytical method for investigating the two-dimensional distributions of stresses set up in a rectangular plate by a load applied along its sides in any arbitrary manner. Proposed independently by Mathieu (1890), Inglis (1921) and Pickett (1944), and later named the ‘superposition method’, it has been applied with success to the study of distribution of stresses inside a rectangle. The object of this paper is to prove the advantages of that approach when studying a stress field near the boundaries, including specific cases of discontinuous and concentrated normal and shear loadings. The method is illustrated by several numerical examples, the rapidity of convergence and the accuracy of results are investigated. The distribution of stresses along some typical lines in the plate are computed and shown graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lamé, Lecons sur la Théorie Mathématique de l'Élasticité des Corps Solids. Paris: Bachelier (1852).

    Google Scholar 

  2. L.N.G. Filon, On an approximate solution for the bending of a beam of rectangular cross-section under any system of load, with special references to points of concentrated or discontinuous loading. Philos. Trans. R. Soc. London A 201 (1903) 63–155.

    Google Scholar 

  3. S.P. Timoshenko, The approximate solution of two-dimensional problems in elasticity. Philos. Mag. (ser. 6) 47 (1924) 1095–1104.

    Google Scholar 

  4. L. Föppl, Neuere Fortschritte der technischen Elastizitätstheorie. Z. angew. Math. Mech. 1 (1921) 466–481.

    Google Scholar 

  5. A. Nadai, Die elastischen Platten. Berlin: Springer (1925).

    Google Scholar 

  6. A. Timpe, Probleme der Spannungsverteilung in ebenen Systemen einfach gelöst mit Hilfe der Airyschen Funktion. Z. Math. Phys. 52 (1905) 348–383.

    Google Scholar 

  7. A.E.H. Love, Biharmonic analysis, especially in a rectangle, and its application to the theory of elasticity. J. London Math. Soc. 3 (1928) 144–156.

    Google Scholar 

  8. A.C. Dixon, The problem of the rectangular plate. J. London Math. Soc. 9 (1934) 61–74.

    Google Scholar 

  9. C.H. Ribière, Sur la flexion des piéces épaisses. C. R. Acad. Sci. Paris 126 (1898) 402–404.

    Google Scholar 

  10. A.E.H. Love, The Mathematical Theory of Elasticity. 4th edn. New York: Dover (1944).

    Google Scholar 

  11. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity. 3rd edn. New York: McGraw-Hill (1970).

    Google Scholar 

  12. M. Filonenko-Borodich, Theory of Elasticity. New York: Dover (1965).

    Google Scholar 

  13. G.Yu. Dzhanelidze and V.K. Prokopov, Method of homogeneous solutions in the mathematical theory of elasticity. In:Proc. of the Fourth All-Union Congress for Mathematics. Leningrad: Nauka (1964) pp. 551–557 (in Russian).

    Google Scholar 

  14. J. Dougall, An analytical theory of the equilibrium of an isotropic elastic plate. Trans. R. Soc. Edinburgh 41 (1904) 129–228.

    Google Scholar 

  15. L.N.G. Filon, On the expansion of polynomials in series of functions. Proc. London Math. Soc. (ser. 2) 4 (1907) 396–430.

    Google Scholar 

  16. P.F. Papkovitsch, Über eine Form der Lösung des biharmonischen Problems für das Rechteck. Doklady Acad. Sci. USSR 27 (1940) 334–338.

    Google Scholar 

  17. J. Fadle, Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe. Ing.-Arch. 11 (1940) 125–148.

    Google Scholar 

  18. J. Fourier, The Analytical Theory of Heat. New York: Dover (1955).

    Google Scholar 

  19. D.D. Joseph, The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: part I. SIAM J. Appl. Math. 33 (1977) 337–347.

    Google Scholar 

  20. D.D. Joseph and L. Sturgers, The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: part II. SIAM J. Appl. Math. 34 (1978) 7–26.

    Google Scholar 

  21. D.D. Joseph, L. Sturgers and W.H. Warner, Convergence of biorthogonal series of biharmonic eigenfunctions by the method of Titchmarsh. Arch. Rat. Mech. Anal. 78 (1982) 229–279.

    Google Scholar 

  22. R.D. Gregory, The traction boundary value problem for the elastostatic semi-infinite strip, existence of solution and completeness of the Papkovich-Fadle eigenfunctions. Journal of Elasticity 10 (1980) 295–327.

    Google Scholar 

  23. R.D. Gregory, The semi-infinite stripx≥0, −1≤y≤1; completeness of the Papkovich-Fadle eigenfunctions when 237–1, are prescribed. Journal of Elasticity 14 (1984) 27–64.

    Google Scholar 

  24. D.A. Spence, A class of biharmonic end-strip problems arising in elasticity and Stokes flow. IMA J. Appl. Math. 30 (1983) 107–139.

    Google Scholar 

  25. E. Mathieu, Sur l'équilibre d'élasticité d'un prisme rectangle. C. R. Acad. Sci. Paris 90 (1890) 1272–1274.

    Google Scholar 

  26. E. Mathieu, Mémoire sur l'équilibre d'élasticité d'un prisme rectangle. J. École Polytéchnique 30 (1881) 173–196.

    Google Scholar 

  27. E. Mathieu, Théorie de l'Élasticité des Corps Solids. Paris: Gauthier-Villars (1890).

    Google Scholar 

  28. B.M. Koialovich, On one partial differential equation of the fourth order. St-Petersburg: University Press (1902) (in Russian).

    Google Scholar 

  29. I.G. Boobnov, Structural Mechanics of Ships, St-Petersburg: Naval Academy (1914), (in Russian).

    Google Scholar 

  30. H. Hencky, Der Spannungszustand in rechteckigen Platten. München: Roldenbourg (1913).

    Google Scholar 

  31. H.W. March, The deflexion of a rectangular plate fixed at the edges. Trans. Amer. Math. Soc. 27 (1925) 307–317.

    Google Scholar 

  32. G.I. Taylor, The buckling load for a rectangular plate with four clamped edges. Z. angew. Math. Mech. 13 (1933) 147–152.

    Google Scholar 

  33. S.P. Timoshenko, Bending of rectangular plates with clamped edges. In:Proc. of the Fifth Int. Congress for Applied Mechanics. New York: Wiley (1939) pp. 40–43.

    Google Scholar 

  34. A.E. Green, Double Fourier series and boundary value problems. Proc. Cambridge Philos. Soc. 40 (1944) 222–228.

    Google Scholar 

  35. S.P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells. 2nd edn. New York: McGraw-Hill (1959).

    Google Scholar 

  36. C.E. Inglis, Two dimensional stresses in rectangular plates. Engineering 112 (1921) 523–524.

    Google Scholar 

  37. H. Ôkubo, Similarity of the stress distributions in a circular disk and a square plate. J. Appl. Phys. 11 (1940) 720–723.

    Google Scholar 

  38. G. Pickett, Application of the Fourier method to the solution of certain boundary problems in the theory of elasticity. Trans. ASME: J. Appl. Mech. 11 (1944) 176–182.

    Google Scholar 

  39. C.-B. Ling, T.C. Lee and T.Y. Chang, Stresses in a rectangular plate under a pair of symmetric loads inside the plate. Techn. Rep. N 15, Chinese Bureau Aero. Res., Oct. 1944. In:The collected papers of Chin-Bing Ling. Taipei: Academia Sinica (1963) pp. 125–145.

    Google Scholar 

  40. B.M. Koialovich, Studies on the infinite systems of the linear equations. Proc. Steklov's Fiz.-Mat. Inst. 3 (1930) 41–167, (in Russian).

    Google Scholar 

  41. V.T. Grinchenko and A.F. Ulitko, Bending of a square elastic plate by a uniform load, Appl. Mech. 1 (1965) N9 71–75.

    Google Scholar 

  42. A.M. Winslow, A study of fundamental relations of the mathematical theory of elasticity. In:Proc. of the Fourth Int. Congress for Applied Mechanics. Cambridge: University Press (1935) pp. 275–276.

    Google Scholar 

  43. A.M. Winslow, Differentiation of Fourier series in stress solutions for rectangular plates. Q. J. Mech. Appl. Math. 4 (1951) 449–460.

    Google Scholar 

  44. F. Oberhettinger, Fourier Expansions. New York: Academic (1973).

    Google Scholar 

  45. L.V. Kantorovich and V.I. Krylov, Approximate Methods of Higher Analysis. New York: Wiley (1964).

    Google Scholar 

  46. V.T. Grinchenko, Equilibrium and Steady Vibrations of Elastic Bodies of Finite Dimensions. Kiev: Naukova Dumka (1978) (in Russian).

    Google Scholar 

  47. A.M. Gomilko, V.T. Grinchenko and V.V. Meleshko, Methods of homogeneous solutions and superposition in static boundary-value problems for an elastic half strip. Sov. Appl. Mech. 22 (1986) 770–778.

    Google Scholar 

  48. D.B. Bogy and E. Sternberg, The effect of couple-stresses on the corner singularity due to an asymmetric shear loading. Int. J. Solids Struct. 4 (1968) 159–174.

    Google Scholar 

  49. A.M. Gomilko, On one class of infinite systems of linear algebraic equations. Comput. Mathematics Math. Phys. 33 (1993) 865–877.

    Google Scholar 

  50. K. Knopp, Infinite Sequences and Series. New York: Dover (1956).

    Google Scholar 

  51. A.N. Krylov, Collected papers Vol. 3, Moscow: Academy of Sciences Press (1949) (in Russian).

    Google Scholar 

  52. A. Cauchy, Usage du calcul des résidus pour la sommation ou la transformation des séries. In:Oeuvres Complète d'Augustin Cauchy, II série, tome VII, Paris: Gauthier-Villars (1889).

    Google Scholar 

  53. G.G. Macfarlane, The application of Mellin transforms to the summation of slowly convergent series. Philos. Mag. (ser. 7) 40 (1949) 188–197.

    Google Scholar 

  54. A. Flamant, Sur la répartition des pressions dans un solide rectangulaire chargé transversalemant. C. R. Acad. Sci. Paris 114 (1892) 1465–1468.

    Google Scholar 

  55. L.N.G. Filon, On the elastic equilibrium of circular cylinders under certain practical systems of load. Philos. Trans. R. Soc. London A 198 (1902) 147–233.

    Google Scholar 

  56. J.R. Hutchinson, Vibrations of solid cylinders. Trans. ASME: J. Appl. Mech. 47 (1980) 901–907.

    Google Scholar 

  57. V.T. Grinchenko and V.V. Meleshko, Steady Vibrations and Waves in Elastic Bodies. Kiev: Naukova Dumka (1981) (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meleshko, V.V. Equilibrium of elastic rectangle: Mathieu-Inglis-Pickett solution revisited. J Elasticity 40, 207–238 (1995). https://doi.org/10.1007/BF00043957

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00043957

Mathematics Subject Classifications (1991)

Navigation