Skip to main content
Log in

Ribosome-binding sites on chloroplastrbcL andpsbA mRNAs and light-induced initiation of D1 translation

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Chloroplast ribosome-binding sites were identified on the plastidrbcL andpsbA mRNAs using toeprint analysis. TherbcL translation initiation domain is highly conserved and contains a prokaryotic Shine-Dalgarno (SD) sequence (GGAGG) located 4 to 12 nucleotides upstream of the initiator AUG. Toeprint analysis ofrbcL mRNA associated with plastid polysomes revealed strong toeprint signals 15 nucleotides downstream from the AUG indicating ribosome binding at the translation initiation site.Escherichia coli 30S ribosomes generated similar toeprint signals when mixed withrbcL mRNA in the presence of initiator tRNA. These results indicate that plastid SD sequences are functional in chloroplast translation initiation. ThepsbA initiator region lacks a SD sequence within 12 nucleotides of the initiator AUG. However, toeprint analysis of soluble and membrane polysome-associatedpsbA mRNA revealed ribosomes bound to the initiator region.E. coli 30S ribosomes did not associate with thepsbA translation initiation region.E. coli and chloroplast ribosomes bind to an upstream region which contains a conserved SD-like sequence. Therefore, translation initiation onpsbA mRNA may involve the transient binding of chloroplast ribosomes to this upstream SD-like sequence followed by scanning to localize the initiator AUG. Illumination 8-day-old dark-grown barley seedlings caused an increase in polysome-associatedpsbA mRNA and the abundance of initiation complexes bound topsbA mRNA. These results demonstrate that light modulates D1 translation initiation in plastids of older dark-grown barley seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adir N, Shochat S, Ohad I: Light-dependent D1 protein synthesis and translocation is regulated by reaction center II. J Biol Chem 265: 12563–12568 (1990).

    Google Scholar 

  2. Alscher-Herman R, Jagendorf AT, Grumet R: Ribosomethylakoid association in peas. Influence of Anoxia. Plant Physiol 64: 232–235 (1979).

    Google Scholar 

  3. Baumgartner BJ, Rapp JC, Mullet JE: Plastid genes encoding the transcription/translation apparatus are differentially transcribed early in barley (Hordeum vulgare) chloroplast development. Plant Physiol 101: 781–791 (1993).

    Google Scholar 

  4. Berry JO, Breiding DE, Klessig DF: Light-mediated control of translational initiation of ribulose-1,5-bisphosphate carboxylase in amaranth cotyledons. Plant Cell 2: 795–803 (1990).

    Google Scholar 

  5. Berry JO, Carr JP, Klessig DF: mRNAs encoding ribulose-1,5-bisphosphate carboxylase remain bound to polysomes but are not translated in amaranth seedlings transferred do darkness. Proc Natl Acad Sci USA 85: 4190–4194 (1988).

    Google Scholar 

  6. Berry JO, Nikolau BJ, Carr JP, Klessig DF: Transcriptional and post-transcriptional regulation of ribulose 1,5-bisphosphate carboxylase gene expression in light- and dark-grown amaranth cotyledons. Mol Cell Biol 5: 2238–2246 (1985).

    Google Scholar 

  7. Berry JO, Nikolau BJ, Carr JP, Klessig DF: Translational regulation of light-induced ribulose 1,5-bisphosphate carboxylase gene expression in amaranth. Mol Cell Biol 6: 2347–2353 (1986).

    Google Scholar 

  8. Bisanz-Seyer C, Li Y-F, Seyer P, Mache R: The components of the plastid ribosome are not accumulated synchronously during the early development in spinach plants. Plant Mol Biol 12: 201–211 (1989).

    Google Scholar 

  9. Bonham-Smith PC, Bourque DP: Translation of chloroplast-encoded mRNA: potential initiation and termination signals. Nucl Acids Res 17: 2057–2080 (1989).

    Google Scholar 

  10. Boyer SK, Mullet JE: Sequence and transcript map of barley chloroplastpsbA gene. Nucl Acids Res 16: 8184 (1988).

    Google Scholar 

  11. Danon A, Mayfield SPY: Light regulated translational actrivators: identification of chloroplast gene specific mRNA binding proteins. EMBO J 10: 3993–4001 (1991).

    Google Scholar 

  12. Deng X-W, Gruissem W. Constitutive transcription and regulation of gene expression in non-photosynthetic plastids of higher plants. EMBO J 7: 3301–3308 (1988).

    Google Scholar 

  13. Fish LE, Jagendorf AT: Light-induced increase in the number and activity of ribosomes bound to pea chloroplast thylakoidsin vivo. Plant Physiol 69: 814–825 (1982).

    Google Scholar 

  14. Fromm H, Devic M, Fluhr R, Edelman M: Control ofpsbA gene expression; in matureSpirodela chloroplasts light regulation of 32-kd protein synthesis is independent of transcript level. EMBO J 4: 291–295 (1985).

    Google Scholar 

  15. Gamble PE, Klein RR, Mullet JE: Illumination of eight-day-old dark-grown barley seedlings activates chloroplast protein synthesis; evidence for regulation of translation initiation Photosynthesis 285–298 (1989).

  16. Gold JC, Spremulli LL;Euglena gracilis chloroplast initiation factor 2. J Biol Chem 260: 14897–14900 (1985).

    Google Scholar 

  17. Gold L: Post-transcriptional regulatory mechanisms inE. coli. Annu Rev Biochem 57: 199–233 (1988).

    Google Scholar 

  18. Gold L, Pribnow D, Schneider T, Shinedling S, Singer BS, Stormo G: Translation initiation in procaryotes. Annu Rev Microbiol 35: 365–403 (1981).

    Google Scholar 

  19. Gray MW, Doolittle WF: Has the endosymbiont hypothesis been proven. Microbiol Rev 46: 1–42 (1982).

    Google Scholar 

  20. Hanley-Bowdoin L, Orozco EMJr, Chua N-H:In vitro synthesis and processing of a maize chloroplast transcript encoded by ribulose 1,5-bisphosphate carboxylase large subunit gene. Mol Cell Biol 5: 2733–2745 (1985).

    Google Scholar 

  21. Hartz D, McPheeters DS, Gold L: Selection of the initiator tRNA byEscherichia coli initiation factors. Genes Devel 3: 1899–1912 (1989).

    Google Scholar 

  22. Hartz D, McPheeters DS, Traut R, Gold L: Extension inhibition analysis of translation initiation complexes. Meth Enzymol 164: 419–425 (1988).

    Google Scholar 

  23. Highfield PE, Ellis RJ: Protein synthesis in chloroplasts VII. Initiation of protein synthesis in isolated intact pea chloroplasts. Biochim Biophys Acta 447: 20–27 (1976).

    Google Scholar 

  24. Kim J, Klein PG, Mullet JE: Ribosomes pause at specific sites during synthesis of membrane-bound chloroplast reaction center protein D1. J Biol Chem 266: 14931–14938 (1991).

    Google Scholar 

  25. Kim M, Christopher DA, Mullet JE: Direct evidence for selective modulation ofpsbA, rpoA, rbcL and 16S RNA stability during barley chloroplast development. Plant Mol Biol 22: 447–463 (1993).

    Google Scholar 

  26. Klein RR, Mullet JE: Control of gene expression during higher plant chloroplast biogenesis. J Biol Chem 262: 4341–4348 (1987).

    Google Scholar 

  27. Klein RR, Mason HS, Mullet JE: Light-regulated translation of chloroplast proteins. I. Transcripts ofpsaA-psaB, psbA, andrbcL are associated with polysomes in dark-grown and illuminated barley seedlings. J Cell Biol 106: 289–301 (1988).

    Google Scholar 

  28. Kozak M: Comparison of initiation of protein synthesis in procaryotes, eucaryotes and organelles. Microbiol Rev 47: 1–45 (1983).

    Google Scholar 

  29. Kraus BL, Spremulli LL: Chloroplast initiation factor 3 fromEuglena gracilis. J Biol Chem 260: 4781–4784 (1986).

    Google Scholar 

  30. Liu X-Q, Hosler JP, Boynton JE, Gillham NW. mRNA for two ribosomal proteins are preferentially translated in the chloroplast ofChlamydomonas reinhardtii under conditions of reduced protein synthesis. Plant Mol Biol 12: 385–394 (1989).

    Google Scholar 

  31. McCarthy JEG, Gualerzi C: Translational control of prokaryotic gene expression. Trends Genet 6: 78–85 (1990).

    Google Scholar 

  32. McPheeters DS, Stormo GD, Gold L: The autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA. J Mol Biol 201: 517–535 (1988).

    Google Scholar 

  33. Mullet JE, Orozco EMJr, Chua N-H: Multiple transcripts for higher plantrbcL andatpB genes and localization of the transcription initiation site of therbcL gene. Plant Mol Biol 4: 39–45 (1985).

    Google Scholar 

  34. Reinbothe S, Reinbothe C, Heintzen C, Seidenbecher C, Parthier B: A methyl jasmonate-induced shift in the length of the 5′ untranslated region impairs translation of the plastidrbcL transcript in barley. EMBO J 12: 1505–1512 (1993).

    Google Scholar 

  35. Shine J, Dalgarno L: The 3′-terminal sequence ofEscherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71: 1342–1346 (1974).

    Google Scholar 

  36. Staub JM, Maliga P: Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of thepsbA mRNA. EMBO J 12: 601–606 (1993).

    Google Scholar 

  37. Zurawski G, Clegg MT, Brown AHD: The nature-8 nucleotide sequence divergence between barley and maize chloroplast DNA Genetics 106: 735–749 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Mullet, J.E. Ribosome-binding sites on chloroplastrbcL andpsbA mRNAs and light-induced initiation of D1 translation. Plant Mol Biol 25, 437–448 (1994). https://doi.org/10.1007/BF00043872

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00043872

Key words

Navigation