Skip to main content
Log in

Genomic structure, expression and evolution of the alfalfa aspartate aminotransferase genes

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Genomic clones encoding two isozymes of aspartate aminotransferase (AAT) were isolated from an alfalfa genomic library and their DNA sequences were determined. The AAT1 gene contains 12 exons that encode a cytosolic protein expressed at similar levels in roots, stems and nodules. In nodules, the amount of AAT1 mRNA was similar at all stages of development, and was slightly reduced in nodules incapable of fixing nitrogen. The AAT1 mRNA is polyadenylated at multiple sites differing by more than 250 bp. The AAT2 gene contains 11 exons, with 5 introns located in positions identical to those found in animal AAT genes, and encodes a plastid-localized isozyme. The AAT2 mRNA is polyadenylated at a very limited range of sites. The transit peptide of AAT2 is encoded by the first two and part of the third exon. AAT2 mRNA is much more abundant in nodules than in other organs, and increases dramatically during the course of nodule development. Unlike AAT1, expression of AAT2 is significantly reduced in nodules incapable of fixing nitrogen. Phylogenetic analysis of deduced AAT proteins revealed 4 separate but related groups of AAT proteins; the animal cytosolic AATs, the plant cytosolic AATs, the plant plastid AATs, and the mitochondrial AATs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bousquet-Lemercier B, Pol S, Pave-Preux M, Hanoune J, Barouki R. Properties of human liver cytosolic aspartate aminotransferase mRNAs generated by alternative polyadenylation site selection Biochemistry 29: 5293–5299 (1990).

    Google Scholar 

  2. Cooper AJL, Meister A: Transamination reactions in metabolism. A. Metabolic significance of transamination. In: Christen P, Metzler DE (eds) Transaminases, pp. 534–563. John Wiley and Sons, New York (1985).

    Google Scholar 

  3. Cronin NB, Maras B, Barra D, Doonan S. The amino acid sequence of the aspartate aminotransferase from baker's yeast (Saccharomyces cerevisiae). Biochem J 277: 335–340 (1991).

    Google Scholar 

  4. Cubellis MV, Rozzo C, Natti G, Arnone MI, Marino G, Sannia G: Cloning and sequencing of the gene coding for aspartate aminotransferase from the thermophilic archaebacteriumSulfolobus solfataricus Eur J Biochem 186: 375–381 (1989).

    Google Scholar 

  5. Farnham MW, Griffith SM, Miller SS, Vance CP. Aspartate aminotransferase in alfalfa root nodules. III. Genotypic and tissue expression of aspartate aminotransferase in alfalfa and other species. Plant Physiol 94: 1634–1640 (1990).

    Google Scholar 

  6. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 (1985).

    Google Scholar 

  7. Fotheringham IG, Dacey SA, Taylor PP, Smith TJ, Hunter MG, Finlay ME, Primrose SB, Parker DM, Edwards RM: The cloning and sequence analysis of theaspC andtyrB genes fromEscherichia coli K12 — comparison of the primary structures of the aspartate aminotransferase and aromatic aminotransferase ofE. coli with those of pig aspartate aminotransferase. Biochem J 234: 593–604 (1986).

    Google Scholar 

  8. Gantt JS, Larson RJ, Farnham MW, Pathirana SM, Miller SS, Vance CP: Aspartate aminotransferase in effective and ineffective alfalfa nodules. Cloning of a cDNA and determination of enzyme activity, protein, and mRNA levels. Plant Physiol 98: 868–878 (1992).

    Google Scholar 

  9. Givan CV: Aminotransferases in higher plants. In: Miflin BJ (ed) The Biochemistry of Plants: A Comprehensive Treatise, pp. 329–357. Academic Press, New York (1980).

    Google Scholar 

  10. Gregerson RG, Larson RJ, Petrowski M, Gantt JS, Vance CP. Molecular analysis of allelic polymorphism at the AAT2 locus of alfalfa. Mol Gen Genet 241: 124–128 (1993).

    Google Scholar 

  11. Gregerson RG, Miller SS, Twary SN, Gantt JS, Vance CP: Molecular characterization of NADH-glutamate synthase from alfalfa. Plant Cell 5: 215–226 (1993).

    Google Scholar 

  12. Griffith SM, Vance CP: Aspartate aminotransferase in alfalfa root nodules. I. Purification and partial characterization. Plant Physiol 90: 1622–1629 (1989).

    Google Scholar 

  13. Grossberger D: Minipreps of DNA from bacteriophage lambda Nucl Acids Res 15: 6737 (1987).

    Google Scholar 

  14. Hatch MD, Mau SL: Activity, location and role of aspartate aminotransferase and alanine aminotransferase isoenzymes in leaves with C4 photosynthesis. Arch Biochem Biophys 156: 195–206 (1973).

    Google Scholar 

  15. Heber U: Metabolite exchange between chloroplasts and cytoplasm. Annu Rev Plant Physiol 24: 393–421 (1974).

    Google Scholar 

  16. Henikoff S: Unidirectional digestion with exonuclease III in DNA sequence analysis. Meth Enzymol 155: 156–165 (1987).

    Google Scholar 

  17. Horio Y, Tanaka T, Taketoshi M, Nagashima F, Tanase S, Morino Y, Wada H: Rat cytosolic aspartate aminotransferase: molecular cloning of cDNA and expression inEscherichia coli. J Biochem (Tokyo) 103: 797–804 (1988).

    Google Scholar 

  18. Jackson IJ: A reappraisal of non-consensus mRNA splice sites. Nucl Acids Res 19: 3795–3798.

  19. Jaussi R, Cotton B, Juretic N, Christen P, Schumperli D: The primary structure of the precursor of chicken mitochondrial aspartate aminotransferase: cloning and sequence analysis of DNA. J Biol Chem 260: 16060–16063 (1985).

    Google Scholar 

  20. Jensen EO, Paludank K, Hyldig-Nielsen JT, Jorgensen P, Marcker KA. The structure of a leghaemoglobin gene from soybean. Nature 291: 677–679 (1981).

    Google Scholar 

  21. Joh T, Nomiyama H, Maeda S, Shimada K, Morino Y: Cloning and sequence analysis of a cDNA encoding porcine mitochondrial aspartate aminotransferase precursor. Proc Nat Acad Sci USA 82: 6065–6069 (1985).

    Google Scholar 

  22. Jorgensen J-E, Stougaard J, Marcker KA: A two-component nodule-specific enhancer in the soybean N23 gene promoter. Plant Cell 3: 819–827 (1991).

    Google Scholar 

  23. Joshi CP. Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucl Acids Res 15: 9627–9640 (1987).

    Google Scholar 

  24. Juretic N, Mattes U, Ziak M, Christen P, Jaussi R: Structure of the genes of two homologous intracellularly heterotopic isoenzymes. Cytosolic and mitochondrial aspartate aminotransferases of chicken. Eur J Biochem 192: 119–126 (1990).

    Google Scholar 

  25. Kersanach R, Brinkman H, Liaud M-F, Zhang D-X, Martin W, Cerff R: Five identical intron positions in ancient duplicated genes of eubacterial origin. Nature 367: 387–389 (1994).

    Google Scholar 

  26. Marchionni M, Gilbert W: The triosephosphate isomerase gene from maize: introns antedate the plant-animal divergence. Cell 46: 133–141 (1986).

    Google Scholar 

  27. Mattes U, Jaussi R, Ziak M, Juretic N, Lindenmann JM, Christen P: Structure of cDNA of cytosolic aspartate aminotransferase of chicken and its expression inE. coli. Biochemie 71: 411–416 (1989).

    Google Scholar 

  28. Mattingly LR, Rodrizuez-Berrocal FJ, Gordon J, Iriate A, Martinez-Carrion M: Molecular cloning and in vivo expression of a precursor to rat mitochondrial aspartate aminotransferase. Biochem Biophys Res Commun 149: 859–865 (1987).

    Google Scholar 

  29. Metz BA, Welters P, Hoffman HJ, Jensen EO, Schell J, deBruijn FJ: Primary structure and promoter analysis of leghaemoglobin genes of the stem-nodulated tropical legumeSesbania rostrata: conserved coding sequences,cis-acting elements, andtrans-acting factors. Mol Gen Genet 214: 181–191 (1988).

    Google Scholar 

  30. Murray MG, Thompson WF: Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8: 4321–4326 (1980).

    Google Scholar 

  31. Nagashima F, Tanase S, Fukumoto Y, Joh T, Nomiyma H, Tsuzuki T, Shimada K, Kuramitsu S, Kagamiyama H, Morino Y: cDNA cloning and expression of pig cytosolic aspartate aminotransferase inEscherichia coli: amino-terminal heterogeneity of expressed products and lack of its correlation with enzyme function. Biochemistry 28: 1153–1160 (1989).

    Google Scholar 

  32. Obaru K, Nomiyama H, Shimada K, Nagashima F, Morino Y: Cloning and sequence analysis of mRNA for mouse aspartate aminotransferase isoenzymes. J Biol Chem 261: 16976–16983 (1986).

    Google Scholar 

  33. Obaru K, Tsuzuki T, Setoyama C, Shimada K: Structural organization of the mouse aspartate aminotransferase isoenzyme genes. Introns antedate the divergence of cytosolic and mitochondrial isoenzyme genes. J Mol Biol 200: 13–22 (1988).

    Google Scholar 

  34. Pathirana SM, Vance CP, Miller SS, Gantt JS: Alfalfa root nodule phosphoenolpyruvate carboxylase: characterization of the cDNA and expression in effective and ineffective nodules. Plant Mol Biol 20: 437–450 (1992).

    Google Scholar 

  35. Pol S, Bousquet-Lemercier B, Pave-Preux M, Pawlak A, Nalpas B, Berthelot P, Hanoune J, Barouki R: Nucleotide sequence and tissue distribution of the human mitochondrial aspartate aminotransferase mRNA. Biochem Biophys Res Commun 157: 1309–1315 (1988).

    Google Scholar 

  36. Reynolds PHS, Farnden KJF: The involvement of aspartate aminotransferases in ammonium assimilation in lupin nodules. Phytochemistry 18: 1625–1630 (1979).

    Google Scholar 

  37. Reynolds PHS, Smith LA, Dickson JMJJ, Jones WT, Jones SD, Rodber KA, Carne A, Liddane CP: Molecular cloning of a cDNA encoding aspartate aminotransferase-P2 from lupin root nodules. Plant Mol Biol 19 465–472 (1992).

    Google Scholar 

  38. Robinson DL, Kahn ML, Vance CP: Cellular localization of nodule-enhanced aspartate aminotransferase inMedicago sativa L. Planta 192: 202–210 (1994).

    Google Scholar 

  39. Ryan E, Bodley F, Fottrell PF: Purification and characterization of aspartate aminotransferase from soybean root nodules andRhizobium japonicum. Phytochemistry 11: 957–963 (1972).

    Google Scholar 

  40. Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  41. Sandal NN, Bojsen K, Marker KA. A small family of nodule-specific genes from soybean. Nucl Acids Res 15: 1507–1519 (1987).

    Google Scholar 

  42. Sangwan V, Lenvik TR, Gantt JS: TheArabidopsis thaliana ribosomal protein S15 (rig) gene. Biochem Biophys Acta (in press).

  43. Schubert KR: Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Annu Rev Plant Physiol 37: 537–574 (1986).

    Google Scholar 

  44. Sherman DR, Kloek AP, Krishnan BR, Guinn B, Goldberg DE: Ascaris hemoglobin gene: plant-like structure reflects the ancestral globin gene. Proc Nat Acad Sci USA 89: 11696–11700 (1992).

    Google Scholar 

  45. Stougaard J, Sandal NN, Gron A, Kuhley A, Marcker KA: 5′ analysis of the soybean leghaemoglobinlbc3 gene: regulatory elements required for promoter activity and organ specificity. EMBO J 6: 3563–3569 (1987).

    Google Scholar 

  46. Strommer JN, Gregerson RG, Vayda M: Isolation and characterization of plant mRNA. In: Glick BR, Thompson JE (eds) Methods in Plant Molecular Biology and Biochemistry, pp. 49–65. CRC Press, Boca Raton, FL (1993).

    Google Scholar 

  47. Sung M-H, Tanizawa K, Tanaka H, Kuramitsu S, Kagamiyama H, Hirotsu K, Okamoto A, Higuchi T, Soda K: Thermostable aspartate aminotransferase from a thermophilicBacillus species. J Biol Chem 266: 2567–2572 (1991).

    Google Scholar 

  48. Swofford DL: PAUP: Phylogenetic analysis using parsimony, version 3.0. Computer program distributed by the Illinois Natural History Survey, Champaign, IL (1990).

  49. Taniguchi M, Sawaki H, Sasakawa H, Hase T, Sugiyama T: Cloning and sequence analysis of cDNA encoding aspartate aminotransferase isozymes fromPanicum miliaceum L., a C4 plant. Eur J Biochem 204: 611–620 (1992).

    Google Scholar 

  50. Tsuzuki T, Obaru K, Setoyama C, Shimada K: Structural organization of the mouse mitochondrial aspartate aminotransferase gene. J Mol Biol 198: 21–31 (1987).

    Google Scholar 

  51. Turano FJ, Weisenmann JM, Matthews BF: Identification and expression of a cDNA clone encoding aspartate aminotransferase in carrot. Plant Physiol 100: 374–381 (1992).

    Google Scholar 

  52. Udvardi MK, Kahn ML: Isolation and analysis of a cDNA clone that encodes an alfalfa (Medicago sativa) aspartate aminotransferase. Mol Gen Genet 231: 97–105 (1991).

    Google Scholar 

  53. Vance CP, Johnson LEB: Plant determined ineffective nodules in alfalfa (Medicago sativa): structural and biochemical comparisons. Can J Bot 61: 93–106 (1983).

    Google Scholar 

  54. Wadsworth GJ, Marmaras SM, Matthews BF: Isolation and characterization of a soybean cDNA clone encoding the plastid form of aspartate-aminotransferase. Plant Mol Biol 21: 993–1009 (1993).

    Google Scholar 

  55. Watson RJ, Rastogi VK: Cloning and nucleotide sequencing ofRhizobium meliloti aminotransferase genes: an aspartate aminotransferase required for symbiotic nitrogen fixation is atypical. J Bact 175: 1919–1928 (1993).

    Google Scholar 

  56. White O, Soderlund C, Shanmugan P, Fields C: Information contents and dinucleotide compositions of plant intron sequences vary with evolutionary origin. Plant Mol Biol 19: 1057–1064 (1992).

    Google Scholar 

  57. Williamson JR, Safer B, LaNoue KF, Smith CM, Walajtys, E: Mitochondrial-cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol. In: Symposium of the Society for Experimental Biology No. XXVII: Rate of Control of Biological Processes. pp. 241–281. Cambridge University Press (1973).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregerson, R.G., Miller, S.S., Petrowski, M. et al. Genomic structure, expression and evolution of the alfalfa aspartate aminotransferase genes. Plant Mol Biol 25, 387–399 (1994). https://doi.org/10.1007/BF00043868

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00043868

Key words

Navigation