Skip to main content
Log in

Peribacteroid membrane nodulin gene induction by Bradyrhizobium japonicum mutants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Seventeen translation products from Glycine max root mRNA precipitated with antiserum prepared against a peribacteroid membrane preparation from effective root nodules. Messenger RNA from fix +nodules coded for these 17 products plus 7 other nodule-specific polypeptides which bound to the antiserum. Of these 7 nodulins only 4 were present when nodules were infected with Bradyrhizobium japonicum 110 rif 15 2960, which induces the plant to produce ‘empty’ peribacteroid membranes. In nodules infected with B. japonicum strains inducing either very short-lived or defective peribacteroid membrane, only 5 or 6, respectively, of these nodulins could be detected.

From these results we hypothesize that the microsymbiont is responsible for the production of at least 4 different signals leading to peribacteriod membrane formation by the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bisseling T, Franssen H., Govers F, Goudemans T, Louwerse J, Moerman M, Nap JP, van Kammen A: Nodulin gene expression in Pisum sativum. In: Evans HJ, Bottomley PJ, Newton WE (eds) Nitrogen Fixation Research Progress, pp 53–59. Martinus Nijhoff, Dordrecht/Boston/Lancaster (1985).

    Google Scholar 

  2. Bruening ML, Wullstein LH: Evidence for the transfer of rhizobial metabolites to the polyploid nuclei of young clover nodules. Physiol Plant 27: 244–252 (1972).

    Google Scholar 

  3. Brewin NJ, Robertson JG, Wood EA, Wells B, Larkin AP, Galfre G, Butcher GW: Monoclonal antibodies to antigens in the peribacteroid membrane from Rhizobium induced root nodules of pea cross-react with plasma membranes and Golgi bodies. EMBO J 4: 605–611 (1985).

    Google Scholar 

  4. Fortin MG, Zelechowska M, Verma DPS: Specific targetting of membrane nodulins to the peribacteroidenclosing compartment in soybean nodules. EMBO J 4: 3041–3046 (1985).

    Google Scholar 

  5. Fortin MG, Morrison NA, Verma DPS: Nodulin-26a, a peribacteroid membrane nodulin expressed independently of the peribacteroid compartment. Nucleic Acids Res 15: 813–824 (1987).

    Google Scholar 

  6. Franssen HP, Nap JP, Goudemans T, Stiekema W, van Dam H, Govers F, Louwerse J, van Kammen A, Bisseling T. Characterization of cDNA for nodulin-75 of soybean: A gene product involved in early of root nodule development. Proc Natl Acad. Sci USA 84: 4495–4499 (1987).

    Google Scholar 

  7. Garbers C, Meckbach R, Mellor RB, Werner D: Protease (thermolysin) inhibition activity in the peribacteroid space of Glycine max root nodules. J Plant Physiol 132: 442–445 (1988).

    Google Scholar 

  8. Gloudemans T, de Vries S, Bussink HJ, Malik NSA, Franssen HJ, Louwerse J, Bisseling T: Nodulin gene expression during soybean (Glycine max) nodule development. Plant Mol Biol 8: 395–403 (1987).

    Google Scholar 

  9. Govers F, Nap JP, Moerman M, Franssen HJ, van Kammen A, Bisseling T: cDNA cloning and developmental expression of pea nodulin genes. Plant Mol Biol 8: 425–435 (1987).

    Google Scholar 

  10. Herrlinger JD: Antigenspezifische Unterdrückung der 040 Antikörperbildung sensibilisierter Tiere. Fischer Verlag, Stuttgart (1979).

    Google Scholar 

  11. Kim YS, Perdomo J, Nordberg: Glycoprotein biosynthesis in small intestinal mucosa. J Biol Chem 246: 5466–5476 (1971).

    Google Scholar 

  12. Konieczny A., Szczyglowski K, Boron L, Przybylska M, Legocki AB. Expression of lupin nodulin genes during root nodule development. Plant Sci 55: 145–149 (1988).

    Google Scholar 

  13. Legocki RP, Verma DPS: Identification of ‘nodule specific’ host proteins (nodulins) involved in the development of Rhizobium-legume symbiosis. Cell 20: 153–163 (1980).

    Google Scholar 

  14. Mellor RB, Mörschel E, Werner D: Legume root response to symbiotic infection. Enzymes of the peribacteroid space. Z Naturforsch 39c: 123–125 (1984).

    Google Scholar 

  15. Mellor RB, Christensen TMIE, Bassarab S, Werner D: Phospholipid transfer from ER to the peribacteroid membrane in soybean nodules. Z Naturforsch 40c: 73–79 (1985).

    Google Scholar 

  16. Mellor RB, Werner D: The fractionation of Glycine max root nodule cells: A methodological overview. Endocyt C Res 3: 317–336 (1986).

    Google Scholar 

  17. Mellor RB, Christensen TMIE, Werner D: Choline kinase II is present only in nodules that synthesize stable peribacteroid membranes. Proc Natl Acad Sci USA 83: 659–663 (1986).

    Google Scholar 

  18. Mellor RB, Werner D: Peribacteroid membrane biogenesis in mature legume root nodules. Symbiosis 3: 75–100 (1987).

    Google Scholar 

  19. Mellor RB, Thierfelder H, Pausch G, Werner D: The occurrence of choline kinase II in the cytoplasm of soybean root nodules infected with various strains of Bradyrhizobium japonicum. J Plant Physiol 128: 169–172 (1987).

    Google Scholar 

  20. Morrison NA, Bisseling T, Verma DPS: Development and differentiation of the root nodule: Involvement of plant and bacterial genes. In: Browder W (ed) Developmental Biology, Vol. 5, pp. 405–425. Plenum, New York (1988).

    Google Scholar 

  21. Morrison NA, Verma DPS: A block in the endocytosis of Rhizobium allows cellular differentiation in nodules but affects the expression of some peribacteroid membrane nodulins. Plant Mol Biol 9: 185–196 (1987).

    Google Scholar 

  22. Ostrowski E, Mellor RB, Werner D: The use of colloid gold labelling in the detection of plasma membrane from symbiotic and non-symbiotic Glycine max root cells. Physiol Plant 66: 270–276 (1986).

    Google Scholar 

  23. Pechere JF, Dixon GH, Maybury RH, Neurath H: Cleavage of disulfide bonds in trypsinogen and α-chymotrypsinogen. J Biol Chem 233: 1364–1372 (1958).

    Google Scholar 

  24. Putnoky P, Grosskopf E, Cam Ha DT, Kiss GB, Kondorosi A: Rhizobium fix genes mediate at least two communication steps in symbiotic nodule development. J Cell Biol 106: 597–607 (1988).

    Google Scholar 

  25. Regensburger B, Hennecke H: Free-living and symbiotic nitrogen fixing ability of Rhizobium japonicum is unaffected by rifampicin resistance mutations. FEMS Microbiol Lett 21: 77–81 (1984).

    Google Scholar 

  26. Regensburger B, Meyer L, Filser M, Weber J, Studer D, Lamb JW, Fischer HM, Hahn M, Hennecke H: Bradyrhizobium japonicum mutants defective in root-nodule bacteroid development and nitrogen fixation. Arch Microbial 144: 355–366 (1986).

    Google Scholar 

  27. Rosenfeld MG, Kreibich G, Porov D, Kato K, Sabatini DD: Biosynthesis of lysosomal hydrolases: Their synthesis in bound polysomes and the role of co- and post-translational processing in determining their subcellular distribution. J Cell Biol 93: 135–143 (1982).

    Google Scholar 

  28. Truchet G, Michel M, Denarie J. Sequential analysis of the organogenesis of lucerne root nodules using symbiotically defective mutants of Rhizobium meliloti. Differentiation 16: 163–172 (1980).

    Google Scholar 

  29. Verma DPS, Fortin MG, Stanley J, Mauro VP, Purohit S, Morrison N: Nodulins and nodulin genes of Glycine max: A perspective. Plant Mol Biol 7: 51–61 (1986).

    Google Scholar 

  30. Werner D, Mellor RB, Hahn M, Grisebach H: Soybean root response to symbiotic infection: Glyceollin I accumulation in an ineffective type of soybean nodule with an early loss of the peribacteroid membrane. Z Naturforsch 40: 179–181 (1985).

    Google Scholar 

  31. Werner D, Mörschel E: Differentiation of nodules of Glycine max. Ultrastructural studies of plant cells and bacteroids. Planta 141: 169–177 (1978).

    Google Scholar 

  32. Werner D, Mörschel E, Stripf R, Winchenbach B: Development of nodules of Glycine max infected with an ineffective strain of Rhizobium japonicum Planta 147: 320–329 (1980).

    Google Scholar 

  33. Werner D, Mörschel E, Kort R, Mellor RB, Bassarab S: Lysis of bacteroids in the vicinity of the host cell nucleus in an ineffective (fix-) root nodule of soybean (Glycine max). Planta 162: 8–16 (1984).

    Google Scholar 

  34. Werner D, Mörschel E, Garbers C, Bassarab S, Mellor RB. Particle density and protein composition of the peribacteroid membrane from soybean root nodules is affected by mutation in the microsymbiont Bradyrhizobium japonicum. Planta 174: 263–270 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellor, R.B., Garbers, C. & Werner, D. Peribacteroid membrane nodulin gene induction by Bradyrhizobium japonicum mutants. Plant Mol Biol 12, 307–315 (1989). https://doi.org/10.1007/BF00043208

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00043208

Key words

Navigation