Skip to main content

Consistency and sensitivity of community level endpoints in microcosm tests

Abstract

We review microcosm toxicity tests with 12 chemical stresses and find that the relative sensitivity of certain endpoints is consistent over toxicant type. Changes in species composition occur at very low levels of chronic stress. Endpoints responding at increasing levels of stress are declines in species numbers relative to expected numbers, followed by decreased oxygen production and decreased total production. Other endpoints are quite sensitive in response to some toxicants but insensitive to others (e.g., autotrophic biomass). In addition, other endpoints respond unpredictably to stress, showing stimulation under some conditions and impairment under others. We compare our observations to the progressions of impact suggested from published whole ecosystem experiments and speculate about a general ecosystem distress syndrome and the implications for choosing endpoints in both toxicity testing and monitoring.

This is a preview of subscription content, access via your institution.

References

  • APHA (American Public Health Association, American Water Works Association & Water Pollution Control Federation), 1989. Standard Methods for the Examination of Water and Wastewater, 17th edn. Washington, D.C. 1268 pp.

  • Bott, T., J. T. Brock, C. S. Dunn, R. J. Naiman, R. W. Ovink & R. C. Petersen, 1985. Benthic community metabolism in four temperate stream systems: An inter-biome comparison and evaluation of the river continuum concept. Hydrobiologia 123: 3–45.

    Google Scholar 

  • Cairns, J.Jr. & B. R. Niederlehner, 1991. Adaptation and resistance of ecosystems to stress. Air Force Off. Sci. Res., AFOSR-880263, Bolling AFB, Washington, D.C.

    Google Scholar 

  • Cairns, J.Jr., J. R. Pratt & B. R. Niederlehner, 1985. A provisional multispecies toxicity test using indigenous organisms. J. Test. Eval. 13: 316–319.

    Google Scholar 

  • Cairns, J.Jr., B. R. Niederlehner & J. R. Pratt, 1990. Evaluation of joint toxicity of chlorine and ammonia to aquatic communities. Aquat. Toxicol. 16: 87–100.

    Google Scholar 

  • Gilderhaus, P. A., 1967. Effects of diquat on bluegills and their food organisms. Prog. Fish-Cult. 29: 67–74.

    Google Scholar 

  • Hendrickson, J. A. Jr., 1978. Statistical analysis of the presence-absence component of species composition data. In: K. L. Dickson, J. Cairns, Jr. & R. L. Livingston (eds), Biological Data in Water Pollution Assessment: Quantitative and Statistical Analyses, Amer. Soc. Test. and Materials, STP652: 113–123.

  • Holcombe, G. W., G. L. Phipps & J. T. Fiandt, 1982. Effects of phenol, 2,4-dimethylphenol, and pentachlorophenol on embryo, larval, and early juvenile Fathead Minnows (Pimephales promelas). Arch. Environ. Contam. Toxicol. 11: 73–78.

    Google Scholar 

  • Macek, K. J., K. S. Buxton, S. Sauter, S. Gnilka & J. Dean, 1976. Chronic toxicity of atrazine to selected aquatic invertebrates and fishes, U.S. Environ. Protect. Agency, EPA-600/3-76-047.

  • Margalef, R., 1974. Human impact on transportation and diversity in ecosystems; how far is extrapolation valid? In: Structure, Functioning, and Management of Ecosystems: Proceedings of the First International Congress of Ecology. pp. 237–243. Centre for Agricultural Publishing and Documentation, Wageningen.

    Google Scholar 

  • Marker, A. F. H., 1976. The benthic algae of some streams in southern England. II. The primary production of the epilithon in a small chalk-stream. J. Ecol. 64: 359–373.

    Google Scholar 

  • Niederlehner, B. R. & J. CairnsJr., 1990a. Effects of ammonia on periphytic communities. Environ. Pollut. 66: 207–221.

    Google Scholar 

  • Niederlehner, B. R. & J. CairnsJr., 1990b. Effects of increasing acidity on aquatic protozoan communities. Water Air Soil Pollut. 52: 183–196.

    Google Scholar 

  • Niederlehner, B. R. & J. CairnsJr., 1992. Community response to cumulative toxic impact: Effects of acclimation on zinc tolerance of aufwuchs. Can. J. Fish. Aquat. Sci. 49: 2155–2163.

    Google Scholar 

  • Niederlehner, B. R. & J. CairnsJr., 1993. Effects of previous zinc exposure on pH tolerance of periphyton communities. Environ. Toxicol. Chem. 12: 743–453.

    Google Scholar 

  • Niederlehner, B. R., J. R. Pratt, A. L. BuikemaJr. & J. CairnsJr., 1985. Laboratory tests evaluating the effects of cadmium on freshwater protozoan communities. Environ. Contam. Toxicol. 4: 155–165.

    Google Scholar 

  • Niederlehner, B. R., K. W. Pontasch, J. R. Pratt & J. CairnsJr., 1990. Field evaluation of predictions of environmental effects from a multispecies-microcosm toxicity test. Arch. Environ. Contam. Toxicol. 19: 62–71.

    Google Scholar 

  • Odum, E. P., 1985. Trends expected in stressed ecosystems. Bio-Science 35: 419–422.

    Google Scholar 

  • Owens, T. G. & F. D. King, 1975. The measurement of respiratory electron-transport-system activity in marine zooplankton. Mar. Biol. 30: 27–36.

    Google Scholar 

  • Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross & R. M. Hughes, 1989. Rapid bioassessment protocols for use in streams and rivers; benthic macroinvertebrates and fish. U.S. Environ. Protect. Agency, EPA-444/4-89-001.

  • Pratt, J. R. & N. J. Bowers, 1990. A microcosm procedure for estimating ecological effects of chemicals and mixtures. Tox. Assess. 5: 189–205.

    Google Scholar 

  • Pratt, J. R., B. R. Niederlehner, N. B. Pratt & J. CairnsJr., 1987a. Effects of zinc on freshwater microbial communities. In: E. Lindberg & T. C. Hutchinson (eds), Sixth International Conference on Heavy Metals in the Environment. pp. 324–326. CEP Consultants Ltd., Edinburgh.

    Google Scholar 

  • Pratt, J. R., B. R. Niederlehner, N. J. Bowers & J. CairnsJr., 1987b. Prediction of permissible concentrations of copper from microcosm toxicity tests. Tox. Assess. 2: 417–436.

    Google Scholar 

  • Pratt, J. R., N. J. Bowers, B. R. Niederlehner & J. CairnsJr., 1988a. Effects of atrazine on freshwater microbial communities. Arch. Environ. Contam. Toxicol. 17: 449–457.

    Google Scholar 

  • Pratt, J. R., N. J. Bowers, B. R. Niederlehner & J. CairnsJr., 1988b. Effects of chlorine on microbial communities in naturally derived microcosms. Environ. Toxicol. Chem. 7: 679–687.

    Google Scholar 

  • Pratt, J. R., J. Mitchell, R. Ayers & J. Cairns, Jr., 1989a. Comparison of estimates of effects of a complex effluent at differing levels of biological organization. In: G. W. Suter II & M. A. Lewis (eds), Aquatic Toxicology and Environmental Fate: Eleventh Volume, Amer. Soc. Test. and Materials. STP1007: 174–188.

  • Pratt, J. R., N. J. Bowers, B. R. Niederlehner & J. CairnsJr., 1989b. Response of laboratory ecosystems to environmental stress: Effects of phenol. Tox. Assess. 4: 161–174.

    Google Scholar 

  • Pratt, J. R., N. J. Bowers & J. CairnsJr., 1990. Effects of sediment on estimates of diquat toxicity in laboratory microcosms. Water Res. 24: 51–57.

    Google Scholar 

  • Rapport, D. J., H. A. Regier & T. C. Hutchinson, 1985. Ecosystem behavior under stress. Amer. Nat. 125: 617–640.

    Google Scholar 

  • Schaeffer, D. J., E. E. Herricks & H. W. Kerster, 1988. Ecosystem health I: Measuring ecosystem health. Environ. Managem. 12: 445–455.

    Google Scholar 

  • Schindler, D. W., 1987. Detecting ecosystem responses to anthropogenic stress. Can. J. Fish. Aquat. Sci. 44 (Suppl.): 6–25.

    Google Scholar 

  • Schindler, D. W., 1990. Experimental perturbations of whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos 57: 25–41.

    Google Scholar 

  • Smith, E. P., K. W. Pontash & J. CairnsJr., 1990. Community similarity and the analysis of multispecies environmental data: a unified statistical approach. Water Res. 24: 507–514.

    Google Scholar 

  • Sprague, J. B., 1970. Measurement of pollutant toxicity to fish. II. Utilizing and applying bioassay results. Water Res. 4: 3–32.

    Google Scholar 

  • Stay, F. S., D. P. Larsen, A. Katko & C. M. Rohm, 1985. Effects of atrazine on community level responses in Taub microcosms. In: T. P. Boyle (ed.), Validation and Predictability of Laboratory Methods for Assessing the Fate and Effects of Contaminants in Aquatic Ecosystems, Amer. Soc. for Test. and Materials, STP865: 75–90.

  • USEPA (U.S. Environ. Protect. Agency), 1986. Quality Criteria for Water, EPA-440/5-86-001.

  • USEPA, 1991. Short-term methods for measuring the chronic toxicity of effluents and receiving waters to freshwater organisms, 3rd edn. EPA600/4-91-002.

  • Weber, C. I. (ed.), 1973. Biological field and laboratory methods for measuring the quality of surface waters and effluents, U.S. Environ. Protect. Agency, EPA-670/4-73-001.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Niederlehner, B.R., Cairns, J. Consistency and sensitivity of community level endpoints in microcosm tests. J Aquat Ecosyst Stress Recov 3, 93–99 (1994). https://doi.org/10.1007/BF00042939

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042939

Key words

  • microcosm
  • toxicity
  • function
  • structure
  • sensitivity
  • endpoints