Skip to main content

Automated biomonitors — first line of defense

Abstract

Automated biomonitors operate on a real-time basis and utilize living organisms as the sensors. Traditionally, chemical monitors have been used to assess water quality. However, biological monitors respond to a greater number of toxic conditions. An overview of the various automated biomonitors, assessed by the types of biological sensors employed, is presented. The sensors used include bacteria, algae, invertebrates, and fish. Of all the systems, those monitoring the ventilatory behavior of fish have evolved the furthest with respect to their research, development, commercial availability, and field testing.

This is a preview of subscription content, access via your institution.

References

  • Batac-Catalan, Z. & D. S. White, 1983. Effects of chromium on larval chironomidae as determined by the optical-fiber light interruption biomonitoring systems. In: W. E. Bishop, R. D. Cardwell & B. B. Heidolf (eds), Aquat. Toxicol. & Haz. Assess.: Sixth Symposium. pp. 469–481. ASTM, Philadelphia.

    Google Scholar 

  • Benecke, G., W. Falke & C. Schmidt, 1982. Use of algal fluorescence for an automated biological monitoring system. Bull. Environ. Contam. Toxicol. 28: 385–395.

    Google Scholar 

  • Bulich, A. A., 1979. Use of luminescent bacteria for determining toxicity in aquatic environments. In: L. L. Marking & R. A. Kimerle (eds), Aquat. Toxicol. ASTM STP 667: 98–106.

  • Cairns, J.Jr., 1990. The genesis of biomonitoring in aquatic ecosystems. The Environmental Professional 12: 169–176.

    Google Scholar 

  • Dorward, E. J. & B. G. Barisas, 1984. Acute toxicity screening of water pollutants using a bacterial electrode. Environ. Sci. Technol. 18: 967–972.

    Google Scholar 

  • Ewen, R., 1987. Biological Testing for Toxicity Control in Open Waters. Endress & Hauser, Germany.

    Google Scholar 

  • Geller, W., 1984. A toxicity warning monitor using weakly electric fish, Gnathonemus petrsii. Water Res. 18: 1285–1290.

    Google Scholar 

  • Gruber, D., 1988. A historical perspective. In: D. Gruber & J. M. Diamond (eds), Automated Biomonitoring: Living Sensors as Environmental Monitors. pp. 15–20. Ellis Horwood Ltd., Chichester.

    Google Scholar 

  • Gruber, D., J. M. Diamond & M. J. Parson, 1991. Automated biomonitoring. Environ. Auditor. 2(4): 229–238.

    Google Scholar 

  • Heinis, F., K. R. Timmermans & W. R. Swain, 1990. Short-term lethal effects of cadmium on the filter feeding chironomid larva Glyptotendipes pallens (Meigen) (Diptera). Aquat. Toxicol. 16: 73–86.

    Google Scholar 

  • Holland, G. J. & A. Green, 1975. Development of a groos pollution detector: Laboratory studies. Water Treatment Examination 4: 81–99.

    Google Scholar 

  • Kleerekoper, H., D. Gruber & J. Malis, 1975. Accuracy of localization of a chemical stimulus in flowing and stagnant water by the nurse shark, Ginglymostoma cirratum. J. Comp. Physiol. 98: 257–275.

    Google Scholar 

  • Korver, R. M. & J. B. Sprague, 1988. A real-time computerized video tracking system to monitor locomotor behavior. In: D. S. Gruber & J. M. Diamond (eds), Automated Biomonitoring: Living Sensors as Environmental Monitors. pp. 157–171. Ellis Horwood Ltd., Chichester.

    Google Scholar 

  • Kramer, K. J. M., H. A. Jenner & D. Zwart, 1989. The valve movement response of mussels: A tool in biological monitoring. Hydrobiologia 188/189 (Dev. Hydrobiol. 54): 433–443.

    Google Scholar 

  • Martin, J. V., 1988. Biomonitoring of polluted waters: Three systems. In: D. S. Gruber & J. M. Diamond (eds), Automated Biomonitoring: Living Sensors as Environmental Monitors. pp. 172–181. Ellis Horwood Ltd., Chichester.

    Google Scholar 

  • Morgan, E. L., R. C. Young & J. R. Wright, 1988. Developing portable computer-automated biomonitoring for a regional water quality surveillance network. In: D. S. Gruber & J. M. Diamond (eds), Automated Biomonitoring: Living Sensors as Environmental Monitors. pp. 127–144. Ellis Horwood Ltd., Chichester.

    Google Scholar 

  • Morgan, W. S. G., 1977. An electronic system to monitor the effects of changes in water quality on fish operulum rhythms. In: J. Cairns, K. L. Dickson & G. F. Westlake (eds), Biological Monitoring of Water and Effluent Quality, Amer. Soc. Test. Materials, Spec. Tech. Pub. 607: 38–55.

  • Poels, C. L. M., 1975. Continuous automatic monitoring of surface water with fish. Water Treatment Examination 24: 46–56.

    Google Scholar 

  • Smith, E. H. & H. C. Bailey, 1988. Development of a system for continuous biomonitoring of a domestic water source for early warning of contaminants. In: D. S. Gruber & J. M. Diamond (eds), Automated Biomonitoring: Living Sensors as Environmental Monitors. pp. 182–205. Ellis Horwood Ltd., Chichester.

    Google Scholar 

  • Sprague, J. B., 1964. Avoidance of copper-zinc solutions by young salmon in the laboratory. J. Water Pollut. Control Fed. 36: 990–1004.

    Google Scholar 

  • U.S. EPA (United States Environmental Protection Agency), 1991. Technical Support Document for Water Quality-based Toxics Control. Off. Water Regulations and Standards, Washington, D.C. EPA/505/2–90–001.

    Google Scholar 

  • U.S. EPA, 1992. Guidance on Interpretation and Implementation of Aquatic Life Criteria for Metals. Off. Sci. Technol. Washington, D.C.

    Google Scholar 

  • Van Hoof, F., 1980. Evaluation of an automatic system for detection of toxic substances in surface water using trout. Bull. Environ. Contam. Toxicol. 25: 221–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gruber, D., Frago, C.H. & Rasnake, W.J. Automated biomonitors — first line of defense. J Aquat Ecosyst Stress Recov 3, 87–92 (1994). https://doi.org/10.1007/BF00042938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042938

Key words

  • automated biomonitors
  • biological monitors
  • early warning systems
  • toxics monitoring
  • water quality monitors