Skip to main content
Log in

Elastic impact loading of notched beams and bars

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Four types of impact specimen, Charpy, Izod, Slender Cantilever and Double Notched Bar, are studied using the technique of dynamic photoelasticity. The growth of fringes with time in low modulus photoelastic material is analysed for each speciment and it is concluded that the stress wave behaviour of the Cantilever geometries and Double Notched Bar offer advantages over the traditional Charpy specimen.

Résumé

On étudie quatre types d'éprouvettes de résilience — Charpy V, Izod, Cantilever mince et Barreau à double entaille — en utilisant une technique de photoélasticité dynamique.

On analyse pour chaque type d'éprouvette la croissance en fonction du temps de franges, en utilisant un matériau photoélastique à bas module, et on conclut que les géométries Cantilever et Barreau doublement entaillé présentent certains avantages sur l'éprouvette traditionnelle Charpy, quant au comportement vis-à-vis de l'onde de contrainte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “E399-74 Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials” 1976 Annual Book of ASTM Standards, ASTM Part 10, (1976) 471–490.

  2. British Standards Institution BS 5446: 1977 Methods of Test for Plane-Strain Fracture toughness (KIc) of Metallic Materials.

  3. D.J. Ayres, International Journal of Fracture 12 (1976) 567–578.

    Google Scholar 

  4. J.M. Hodgkinson, N.S. Vlachos, J.H. Whitelaw and J.G. Williams, Proceedings, Royal Society London A 379 (1982) 133–144.

    Google Scholar 

  5. W.L. Server, Journal of Testing and Evaluation 6 (1978) 29–34.

    Google Scholar 

  6. J.A. Zukas et al., Impact Dynamics, J. Wiley (1982).

  7. W.L. Server, R.A. Wullaert, and J.W. Sheckherd, in Flaw Growth and Fracture, J.M. Barsom ed., ASTM STP 631 (1977) 645.

  8. A.S. Kobayashi, M. Ramulu and S. Mall, Journal Pressure Vessel Technology 104 (1982) 25–29.

    Google Scholar 

  9. D.A.W. Taylor, ‘Photoelastic investigations into the propagation of stress waves in structural models’ M. Eng. Thesis, University of Sheffield (1965).

  10. J.W. Dally, W.F. Riley and A.J. Durelli, Journal of Applied Mechanics (1959) 613–620.

  11. A.S. Kobayashi and C.F. Chan, Experimental Mechanics 16 (1976) 176–181.

    Google Scholar 

  12. J. Morton and C. Ruiz. Experimental Mechanics 22 (1982) 210–215.

    Google Scholar 

  13. M.F. Kanninen, P.C. Gehlen, C.R. Barnes, R.G. Hoagland, G.T. Hahn, and C.H. Popelar, in: Nonlinear and Dynamic Fracture Mechanics, N. Perrone, S.N. Atluri eds., ASME AMD Vol. 35 (1979) 185–200.

  14. S. Mall, A.S. Kobayashi, F.J. Loss, in Crack Arrest Methodology and Applications, G.T. Hahn, M.F. Kanninen eds., ASTM STP 711 (1980) 70–85.

  15. L.S. Costin, W.L. Server, J. Duffy, Journal of Engineering Materials and Technology 101 (1979) 168–172.

    Google Scholar 

  16. J.R. Klepaczko, Journal of Engineering Materials and Technology 104 (1982) 29–35.

    Google Scholar 

  17. G.E. Nash, International Journal of Fracture 5 (1969) 269–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corran, R.S.J., Mines, R.A.W. & Ruiz, C. Elastic impact loading of notched beams and bars. Int J Fract 23, 129–144 (1993). https://doi.org/10.1007/BF00042812

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042812

Keywords

Navigation