Skip to main content
Log in

Tomato: a crop species amenable to improvement by cellular and molecular methods

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures.

In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams T.L. & C.F. Quiros, 1985. Somatic hybridization between Lycopersicon peruvianum and L. pennellii: regenerating ability and antibiotic resistance as selection systems. Plant Science 40: 209–219.

    Google Scholar 

  • Ambros P.F., A.J.M. Matzke & M.A. Matzke, 1986. Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. EMBO J. 5: 2073–2077.

    Google Scholar 

  • Atherton J.G. & J. Rudich, 1986. The Tomato Crop. Chapman and Hall, London, New York, 661 pp.

    Google Scholar 

  • Baker B., J. Schell, H. Lörz & N. Federoff, 1986. Transposition of the maize controlling element ‘Activator’ in tobacco. Proc. Natl. Acad. Sci. USA 83: 4844–4848.

    Google Scholar 

  • Baker B., G. Coupland, N. Federoff, P. Starlinger & J. Schell, 1987. Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO J. 6: 1547–1554.

    Google Scholar 

  • Barker D.M., M. Schafer & R. White, 1984. Restriction sites containing CpG show a higher frequency of polymorphism in human DNA. Cell 86: 131–138.

    Google Scholar 

  • Barlow D.P. & H. Lehrach, 1987. Genetics by gelelectrophoresis: the impact of pulsed field gel electrophoresis on mammalian genetics. Trends in Genetics 3: 167–171.

    Google Scholar 

  • Barton D.W., 1950. Pachytene morphology of the tomato chromosome complement. Amer. J. Bot. 37: 639–643.

    Google Scholar 

  • Beckmann J.S. & M. Soller, 1983. Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor. Appl. Genet 67: 35–43.

    Google Scholar 

  • Beckmann J.S. & M. Soller, 1986. Restriction fragment length polymorphisms and genetic improvement of agricultural species. Euphytica 35: 111–124.

    Google Scholar 

  • Behki, R.M. & S.M. Lesley, 1976. In vitro plant regeneration from leaf explants of Lycopersicon esculentum (tomato). Can. J. Bot.: 2409–2414.

  • Bennett M.D., J.B. Smith & J.S. Heslop-Harrison, 1982. Nuclear DNA amounts in angiosperms. Proc. R. Soc. London B, 216: 179–192.

    Google Scholar 

  • Bennetzen J.L. & T.L. Adams, 1984. Selection and characterization of cadmium-resistant suspension cultures of the wild tomato Lycopersicon peruvianum. Plant Cell Rep. 3: 258–261.

    Google Scholar 

  • Bernatzky R. & S.D. Tanksley, 1986a. Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112: 887–898.

    Google Scholar 

  • Bernatzky R. & S.D. Tanksley, 1986b. Majority of random cDNA clones correspond to single loci in the tomato genome. Mol. Gen. Genet. 203: 8–14.

    Google Scholar 

  • Bevan M.W., R.B. Flavell & M.D. Chilton, 1983. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304: 184–187.

    Google Scholar 

  • Botstein D., R.L. White, M. Sholnick & R.W. Davis, 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314–331.

    Google Scholar 

  • Botterman J. & J. Leemans, 1988. Engineering herbicide resistance in plants. Trends in Genetics. 4: 219–222.

    Google Scholar 

  • Bressan R.A., P.M. Hasegawa & A.K. Handa, 1981. Resistance of cultured higher plant cells to polyethylene glycol-induced water stress. Plant Science Lett. 21: 23–30.

    Google Scholar 

  • Buiatti M., G. Marcheschi, F. Tognoni, M. Lipucci di Paola, T. Collina Grenci & G. Martini, 1985. Genetic variability induced by tissue culture in the tomato (Lycopersicon esculentum). Z. Pflanzenzüchtung 94: 162–165.

    Google Scholar 

  • Buiatti M., C. simeti, S. Vannini, G. Marcheschi, A. Scala, P. Bottini, P. Bogani & M.G. Pellegrini, 1987. Isolation of tomato cell lines with altered response to Fusarium cell wand components. Theor. Appl. Genet. 75: 37–40.

    Google Scholar 

  • Burr, B., S.V. Evola, F.A. Burr & J.S. Beckmann, 1983. The application of restriction fragment length polymorphism to plant breeding. In: J.K. Setlow & A. Hollander (Eds). Genetic engineering: principles and methods, vol. 5, pp. 45–59, Plenum Publ. Corp.

  • Chang C., J.L. Bowman, A.W. DeJohn, E.S. Lander & E.M. Meyerowitz, 1988. An RFLP linkage map to facilitate gene cloning in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 85: 6856–6860.

    Google Scholar 

  • Chyi Y.S., R.A. Jorgensen, D. Goldstein, S.D. Tanksley & F. Loaiza-Figueroa, 1986. Localization and stability of Agrobacterium-mediated T-DNA insertions in the Lycopersicon genome. Mol. Gen. Genet. 204: 64–69.

    Google Scholar 

  • Crossway A., J.V. Oakes, J.M. Irvine, B. Ward, V.C. Knauf & C.K. Shewmaker, 1986. Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol. Gen. Genet. 202: 179–185.

    Google Scholar 

  • Cuozzo M., K.M. O'connell, W. Kaniewski, R.X. Fang, N.H. Chua & N.E. Tumer, 1988. Viral protection in transgenic tobacco plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Biotechnology 6: 549–557.

    Google Scholar 

  • Darden K.A., S.S. Smith & N.H. Murakishi, 1986. Regeneration and screening of tomato somaclones for resistance to tobacco mosaic virus. Plant Science 45: 209–213.

    Google Scholar 

  • De Block M., J. Botterman, M.van de Wiele, J. Dockx, C. Thoen, V. Gosselé, N. Rao Movva, C. Thompson, M.van Montagu & J. Leemans, 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6: 2513–2518.

    Google Scholar 

  • De Boer D., F. Cremers, R. Teertstra, L. Smits, J. Hille, S. Smeekens & P. Weisbeek, 1988. In vivo import of plastocyanin and a fusion protein into developmentally different plastids of transgenic plants. EMBO J. 7: 2631–2635.

    Google Scholar 

  • De Framond A.J., K.A. Barton & M.D. Chilton, 1983. Mini-Ti: A new vector strategy for plantgenetic engineering. Biotechnology 1: 262–269.

    Google Scholar 

  • Dellaporta S. & P. Chomet, 1986. In: B. Hohn & E.S. Dennis (Eds). Genetic flux in plants. Springer Verlag, Vienna, New York, pp. 169–216.

    Google Scholar 

  • De Verna J.W., R.T. Chetelat & C.M. Rick, 1987. Cytogenetic, electrophoretic and morphological analysis of progeny of sequidiploid Lycopersicon esculentum-Solanum lycopersicoides hybrids × L. pennellii. Biol. Zent. bl. 106: 417–428.

    Google Scholar 

  • Ecochard R., M.S. Ramanna & D.De Nettancourt, 1969. Detection and cytological analysis of tomato haploids. Genetica 40: 181–190.

    Google Scholar 

  • Evans D.A. & W.R. Sharp, 1983. Single gene mutations in tomato plants regenerated from tissue culture. Science 221: 949–951.

    Google Scholar 

  • Evans D.A. & W.R. Sharp, 1986. Applications of somaclonal variation. Biotechnology 4: 528–532.

    Google Scholar 

  • Federoff N.V., D.B. Furtek & O.E. Nelson, 1984. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc. Natl Acad. Sci. USA 81: 3825–3829.

    Google Scholar 

  • Fillatti J.J., J. Kiser, B. Rose & L. Comai, 1987. Efficient transformation of tomato and the introduction and expression of a gene for herbicide tolerance. In: D.J. Nevins & R.A. Jones (Eds). Tomato Biotechnology, pp. 199–210, Alan R. Liss, Inc. New York.

    Google Scholar 

  • Flavell R.B., 1982. Chromosomal DNA sequences and their organisation. In: B. Parthier & D. Boulter (Eds). Nucleic Acids and Proteins in Plants II. Structure, Biochemistry and Physiology of Nucleic Acids. pp. 46–74. Springer Verlag, Berlin, Heidelberg and New York.

    Google Scholar 

  • Fraley R.T., R.B. Horsch, A. Matzke, M.D. Chilton, W.S. Chilton & P.R. Sanders, 1984. In vitro transformation of petunia cells by an improved method of co-cultivation with A. tumefaciens strains. Plant. Molec. Biol. 3: 371–378.

    Google Scholar 

  • Frankenberger E.A., P.M. Hasegawa & E.C. Tigchelaar, 1981a. Influence of environmental and developmental state on the shoot-forming capacity of tomato genotypes. Z. Pflanzenphysiol. 102: 221–232.

    Google Scholar 

  • Frankenberger E.A., P.M. Hasegawa & E.C. Tigchelaar, 1981b. Diallel analysis of shootforming capacity among selected tomato genotypes. Z. Pflanzenphysiol. 102: 233–242.

    Google Scholar 

  • Galbraith D.W., K.R. Harkins, J.M. Maddox, N.M. Ayres, E.D. Sharma & E. Firoozabady, 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049–1051.

    Google Scholar 

  • Ganal M.W., N.L.V. Lapitan & S.D. Tanksley, 1988. A molecular and cytogenic survey of major repeated DNA sequences in tomato (Lycopersicon esculentum). Mol. Gen. Genet. 213: 262–268.

    Google Scholar 

  • Gavazzi G., C. Tonelli, G. Todesco, E. Arreghini, F. Raffaldi, F. Vecchio, S. Barbuzzi, M.S. Biasini & F. Sala, 1987. Somaclonal variation versus chemically induced mutagenesis in tomato (Lycopersicon esculentum L.). Theor. Appl. Genet. 74: 733–738.

    Google Scholar 

  • Gerlach W.L., D. Llewellyn & J. Haseloff, 1987. Construction of a plant disease resistance gene from the satellite RNA of tobacco ringspot virus. Nature 328: 802–805.

    Google Scholar 

  • Gill B.S., 1983. Tomato cytogenetics-A search for new frontiers. In: M.S. Swaminathan, P.K. Gupta & U. Sinha (Eds). Cytogenetics of Crop Plants pp. 457–480. MacMillan India Ltd., New Delhi.

    Google Scholar 

  • Gottschalk W., 1954. Die Chromosomenstruktur der Solanaceen unter Berücksichtigung Phytogenetischer Fragestellungen. Chromosoma 6: 539–625.

    Google Scholar 

  • Greenblat I.M., 1984. A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element modulator in maize. Genetics 108: 471–485.

    Google Scholar 

  • Gresshoff P.M. & C.H. Doy, 1972. Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 107: 161–170.

    Google Scholar 

  • Gruissem W., K. Callan, J. Lynch, T. Manzara, M. Meighan, B. Narita, B. Piechulla, M. Sugita, M. Thelander & L. Wanner, 1987. Plastid and nuclear gene expression during tomato fruit formation. In: D.J. Nevins & R.A. Jones (Eds.). Tomato Biotechnology, pp. 239–249. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Guri A., A. Levi & K.C. Sink, 1988. Morphological and molecular characterization of somatic hybrid plants between Lycopersicon esculentum and Solanum nigura. Mol. Gen. Genet. 212: 191–198.

    Google Scholar 

  • Gusella J.F., 1986. DNA polymorphism and human disease. Ann. Rev. Biochem. 55: 831–854.

    Google Scholar 

  • Gusella J.F., N.S. Wesxler, P.M. Conneally, S.L. Nayeor, M.A. Anderson, R.E. Tanzi, P.C. Watkins, K. Ottima, M.R. Wallace, A.Y. Sakaguicki, A.B.P.C. Young, I. Shoulson, E. Bonilla & J.B. Martin, 1983. A polymorphic DNA marker linked to Huntington's disease. Nature 306: 238–244.

    Google Scholar 

  • Hain R., P. Stabel, A.P. Czernilofsky, H.H. Steinbiss, L. Herrera-Estrella & J. Schell, 1985. Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts. Mol. Gen. Genet. 199: 161–168.

    Google Scholar 

  • Handley L.W., R.L. Nickels, M.W. Cameron, P.P. Moore & K.L. Sink, 1986. Somatic hybrid plants between Lycopersicon esculentum and Solanum lycopersicoïdes. Theor. Appl. Genet. 71: 691–697.

    Google Scholar 

  • Hanson M.R. & P.M. MacClean, 1987. Tomato plastid and mitochondrial genomes: change and conservation. In: D.J. Nevins & R.A. Jones (Eds). Tomato Biotechnology, pp. 215–228. Alan R. Liss, Inc. New York.

    Google Scholar 

  • Haring, M.A., J. Gao, T. Volbeda, C.T.M. Rommens, H.J.J. Nijkamp & J. Hille, 1988. A comparative study of Tam3 and Ac transposition in trangenic tobacco and petunia plants. Plant Molec. Biol. in press.

  • Harrison B.D., M.A. Mayo & D.C. Baulcombe, 1987. Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA. Nature 328: 799–802.

    Google Scholar 

  • Haseloff J. & W.L. Gerlach, 1988. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334: 585–591.

    Google Scholar 

  • Hause B., F. Baldauf, K. Stock, C. Wasternak & M. Metzlaff, 1986. Molecular analysis of mitochondrial DNA from tomato cell suspension cultures. Curr. Genet. 10: 785–790.

    Google Scholar 

  • Hawkes J.H. & P. Smith, 1965. Continental drift and the age of angiosperm genera. Nature (Lond) 207: 48–50.

    Google Scholar 

  • Helentjaris T., 1987. A genetic linkage map for maize based on RFLPs. Trends in Genetics 3, 217–221.

    Google Scholar 

  • Helentjaris T., G. King, M. Slocum, C. Siedenstrang & S. Wegman, 1985. Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied breeding. Plant Molec. Biol. 5: 109–118.

    Google Scholar 

  • Helentjaris T., M. Slocum, S. Wright, A. Schaefer & J. Nienhuis, 1986. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor. Appl. Genet. 72: 761–769.

    Google Scholar 

  • Herrera-Estrella L., M.de Block, E. Messens, J.P. Hernalsteens, M.van Montagu & J. Schell, 1983a. Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2: 987–995.

    Google Scholar 

  • Herrera-Estrella L., A. Depicker, M.van Montagu & J. Schell, 1983b. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid derived vector. Nature 303: 209–213.

    Google Scholar 

  • Hilder V.A., A.M.R. Gatehouse, S.E. Sheerman, R.F. Barker & D. Boulter, 1987. A novel mechanism of insect resistance engineered into tobacco. Nature 330: 160–163.

    Google Scholar 

  • Hille J., A. Hoekema, P. Hooykaas & R. Schilperoort, 1984. Gene organization of the Ti-plasmid. In: Verma D.P.S., Hohn Th. (Eds). Plant gene research: genes involved in microbe-plant interactions, pp. 287–309. Springer, Berlin.

    Google Scholar 

  • Hille J., F. Verheggen, P. Roelvink, H. Franssen, A.van Kammen & P. Zabel, 1986. Bleomycin resistance: a new dominant selectable marker for plant cell transformation. Plant Molec. Biol. 7: 171–176.

    Google Scholar 

  • Hoekema A., P.R. Hirsch, P.J.J. Hooykaas & R.A. Schilperoort, 1983. A binary plant vector strategy based on separation of the Vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180.

    Google Scholar 

  • Horsch R.B., J.E. Fry, N.L. Hoffmann, M. Wallroth, D. Eichholtz, S.G. Rogers & R.T. Fraley, 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1232.

    Google Scholar 

  • Hosticka L.P. & M. Hanson, 1984. Induction of plastid mutations in tomatoes by nitrosomethylurea. J. Heredity 75: 242–246.

    Google Scholar 

  • Jongsma M., M. Koornneef, P. Zabel & J. Hille, 1987. Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences. Plant Molec. Biol. 8: 383–394.

    Google Scholar 

  • Kartha K.K., O.L. Gamborg, J.P. Shyluk & F. Constabel, 1976. Morphogenic investigations on in vitro leaf culture of tomato (Lycopersicon esculentum Mill cv Starfire) and high frequency plant regeneration. Z. Pflanzenphysiol. 77: 292–301.

    Google Scholar 

  • Khush G.S. & C.M. Rick, 1963. Meiosis in hybrids between Lycopersicon esculentum and Solanum pennellii. Genetics 33: 167–183.

    Google Scholar 

  • Khush G.S. & C.M. Rick, 1968. Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma 23: 452–484.

    Google Scholar 

  • Kinshara A., S.N. Patnaik, E.C. Cocking & J.B. Power, 1986. Somatic hybrid plants of Lycopersicon esculentum Mill. and Lycopersicon peruvianum Mill. J. Plant Physiol. 125: 225–234.

    Google Scholar 

  • Klein T.M., T. Gradziel, M.E. Fromm & J.C. Sanford, 1988. Factors influencing gene delivery into Zea mays cells by highvelocity microprojectiles. Biotechnology 6: 559–563.

    Google Scholar 

  • Koornneef M., C.J. Hanhart, M. Jongsma, I. Toma, R. Weide, P. Zabel & J. Hille, 1986. Breeding of a tomato genotype readily accessible to genetic manipulation. Plant Science 45: 201–208.

    Google Scholar 

  • Koornneef M., C.J. Hanhart & L. Martinelli, 1987. A genetic analysis of cell culture traits in tomato. Theor. Appl. Genet. 74: 633–641.

    Google Scholar 

  • Koornneef, M., J.A.M. van Diepen, C.J. Hanhart, A.C. Kieboom-de Waart, L. Martinelli, H.C.H. Schoenmakers & J. Wijbrandi, 1989. Chromosomal instability of cell and tissue cultures of tomato haploids and diploids. Euphytica (in press).

  • Koukolikova-Nicola Z., L. Albright & B. Hohn, 1987. The mechanism of T-DNA transfer from Agrobacterium tumefaciens to the plant cell. In: Th. Hohn and J. Schell (Eds). Plant DNA Infectious Agents. pp. 109–148. Springer Verlag, Wien, New York.

    Google Scholar 

  • Landry B.S. & R.W. Michelmore, 1987a. Selection of probes of restriction fragment length analysis from plant genomic clones. Plant Molecular Biology Reporter 3: 174–179.

    Google Scholar 

  • Landry, B.S. & R.W. Michelmore, 1987b. Methods and applications of restriction fragment length polymorphism analysis to plants. In: G. Bruening, J. Harada, T. Kosuge & A. Hollaenders (Eds). Tailoring genes for crop improvement. pp. 25–44., Plenum Publ. Corp.

  • Landry B.S., R.V. Kesseli, B. Farrara & R.W. Michelmore, 1987a. A genetic map of lettuce (Lactuca sativa L.) with restriction fragment length polymorphism, isozyme, disease resistance and morphological markers. Genetics 116: 331–337.

    Google Scholar 

  • Landry B.S., R. Kesseli, H. Leung & R.W. Michelmore, 1987b. Comparison of restriction endonucleases and sources of probes for their efficiency in detecting restriction fragment length polymorphisms in lettuce (Lactuca sativa L.) Theor. Appl. Genet. 74: 646–653.

    Google Scholar 

  • Levenko B.A., V.A. Kunalki & G.M. Yurkova, 1977. Studies on callus tissue from anthers I. Tomato. Phytomorphology 27: 377–383.

    Google Scholar 

  • Little P., G. Annison, S. Darling, R. Williamson, T. Cambar & B. Model, 1980. Model for antenatal diagnosis of B-thalassemia and other monogenic disorders by molecular analysis of linked DNA polymorphisms. Nature 285: 144–147.

    Google Scholar 

  • Locky R.D., 1983. Callus formation and organogenesis by explants of six Lycopersicon species. Can. J. Bot. 61: 1072–1079.

    Google Scholar 

  • Lonsdale D.M., T.P. Hodge & CM-R. Fauron, 1984. The physical map and organization of the mitochondrial genome of the fertile cytoplasm of maize. Nucleic Acids Rec. 12: 9249–9261.

    Google Scholar 

  • Manuelidis, L., 1982. Repeated DNA sequences and nuclear. structure. In: G.A. Dover & R.B. Flavell (Eds). Genome evolution, pp. 263–185. Acad Press.

  • Marton L., G.J. Wullems, L. Molendijk & R.A. Schilperoort, 1979 In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277: 129–131.

    Google Scholar 

  • Maxon-Smith J.W. & E.D.B. Ritchie, 1983. A collection of near isogenic lines of tomato. Research tool of the future? Plant Molec. Biol. 1: 41–45.

    Google Scholar 

  • McClean P.E. & M.R. Hanson, 1986. Mitochondrial DNA sequence divergenece among Lycopersicon and related Solanum species. Genetics 112: 649–667.

    Google Scholar 

  • McClintock B., 1984. The significance of responses to challenge. Science 226: 792–801.

    Google Scholar 

  • McCormick S., J. Niedermeyer, A. Barnason, R. Horsch & R. Fraley, 1986. Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5: 81–84.

    Google Scholar 

  • Melchers G., M.D. Sacristan & A.A. Holder, 1978. Somatic hybrid plants of potato and tomato regenerated from fused protoplasts. Carlsberg Res. Commun. 43: 203–208.

    Google Scholar 

  • Menzel M.Y., 1962. Pachytene chromosomes of the intergeneric hybrid Lycopersicon esculentum × Solanum lycopersicoides. Amer. J. Bot. 49: 605–615.

    Google Scholar 

  • Meredith C.P., 1978. Selection and characterization of aluminium-resistant variants from tomato cell cultures. Plant Science Lett. 12: 35–34.

    Google Scholar 

  • Miki L.A., T.J. Reich & V.N. Iyer, 1987. Microinjection: an experimental tool for studying and modifying plant cells. In: Th. Hohn & J. Schell (Eds). Plant DNA Infectious Agents. pp. 249–265. Springer-Verlag, Wien, New York.

    Google Scholar 

  • Moens B.P., 1965. The transmission of a heterochromatic isochromosome in Lycopersicon esculentum. Can. J. Genet. Cytol. 7: 296–303.

    Google Scholar 

  • Morgan A. & E.C. Cocking, 1982. Plant regeneration from protoplasts of Lycopersicon esculentum Mill. Z. Pflanzenphysiol. 106: 97–104.

    Google Scholar 

  • Mühlbach H.P., 1980. Different regeneration potentials of mesophyll protoplasts from cultivated and a wild species of tomato. Planta 148: 89–96.

    Google Scholar 

  • Mutschler M., S.D. Tanksley & C.M. Rick, 1987. Linkage maps of the tomato (Lycopersicon esculentum). Tomato Genet. Coop. 37: 5–34.

    Google Scholar 

  • Negrutiu I., R. Shillito, I. Potrykus, G. Biasini & F. Sala, 1987. Hybrid genes in the analysis of transformation conditions I Setting up a simple method for direct gene transfer in plant protoplasts. Plant Molec. Biol. 8: 363–373.

    Google Scholar 

  • Nelson R.S., S.M. McCormick, X. Delannay, P. Dubré, J. Layton, E.J. Anderson, M. Kanieska, R.K. Proksch, R.B. Horsch, S.G. Rogers, R.T. Fraley & R.N. Beachy, 1988. Virus tolerance, plant growth and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Biotechnology. 6: 403–409.

    Google Scholar 

  • Niedz R., S.M. Rutter, L.W. Handley & K.C. Sink, 1985. Plant regeneration from leaf protoplasts of six tomato cultivars. Plant Science 39, 199–204.

    Google Scholar 

  • O'Brien, S.J., 1987. Genetic maps. Cold Spring Harbor.

  • O'Connell M.A. & M.R. Hanson, 1985. Somatic hybridization between Lycopersicon esculentum and Lycopersicon pennellii. Theor. Appl. Genet. 70: 1–12.

    Google Scholar 

  • O'Connell M.A. & M.R. Hanson, 1986. Regeneration of somatic hybrid plants formed between Lycopersicon esculentum and Solanum rickii. Theor. Appl. Genet 72: 59–65.

    Google Scholar 

  • O'Connell M.A. & M.R. Hanson, 1987. Regeneration of somatic hybrid plants formed between Lycopersicon esculentum and L. pennellii. Theor. Appl. Genet. 75: 83–89.

    Google Scholar 

  • O'Connell M.A., L.P. Hosticka & M.R. Hanson, 1986. Examination of genome stability in cultured Lycopersicon. Plant Cell Reports 5: 276–279.

    Google Scholar 

  • Ohki S., C. Bigot & J. Mouseau, 1978. Analysis of shoot-forming capacity in vitro in two lines of tomato (Lycopersicon esculentum Mill.) and their hybrids. Plant & Cell Physiol 19: 27–42.

    Google Scholar 

  • Ohyama K., H. Fukuzawa, T. Kolchi, H. Shizai, T. Sano, S. Sano, K. Umesono, Y. Shiki, M. Takeuchi, Z. Chang, S. Aota, H. Inokuchi & H. Ozeki, 1986. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574.

    Google Scholar 

  • Osborn T.C., D.C. Alexander & J.F. Forbes, 1987. Identification of restriction fragment length polymorphisms linked to genes controlling soluble solids contents in tomato fruit. Theor. Appl. Genet. 73: 350–356.

    Google Scholar 

  • Padmanabhan V., E.F. Paddock & W.R. Sharp, 1974. Plantlet formation from Lycopersicon esculentum leaf callus. Can. J. Bot. 52: 1429–1432.

    Google Scholar 

  • Palmer J.D., 1985. Comparative organization of chloroplast genomes. Ann. Rev. Genetics 19: 325–354.

    Google Scholar 

  • Palmer J.D. & C.R. Shields, 1984. Tripartite structure of the Brassica campestris mitochondrial genome. Nature (London) 307: 437–440.

    Google Scholar 

  • Palmer J.D. & W.F. Thompson, 1982. Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29: 537–550.

    Google Scholar 

  • Palmer J.D. & D. Zamir, 1982. Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc. Natl. Acad. Sci. USA 79: 5006–5010.

    Google Scholar 

  • Paszkowski J., R.D. Shillito, M. Saul, V. Mandak, T. Hohn, B. Hohn & I. Potrykus, 1984. Direct gene transfer to plants. EMBO J. 3: 2717–2722.

    Google Scholar 

  • Paterson A.H., E.S. Lander, J.D. Hewitt, S. Paterson, S.E. Lincoln & S.D. Tanksley, 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721–726.

    Google Scholar 

  • Phillips A.L., 1985a. Restriction map and clone bank of tomato plastid DNA. Curr. Genet. 10: 147–152.

    Google Scholar 

  • Phillips A.L., 1985b. Localization of genes for chloroplast components in tomato plastid DNA. Curr. Genet. 10: 153–161.

    Google Scholar 

  • Phillips J., S. Panny, H. Kazazian, C. Bochum, C. Scott & R. Smith, 1980. Prenatal diagnosis of sickle cell anemia by restriction endonuclease analysis: HindIII polymorphisms in γ-globin genes extend test applicability. Proc. Natl. Acad. Sci. USA 77: 2853–2856.

    Google Scholar 

  • Pichersky E., R. Bernatzky, S.D. Tanksley, V.S. Malik & A.R. Cashmore, 1987. Genomic organization and evolution of the rbcs and cab gene families in tomato and other higher plants. In: D.J. Nevins & R.A. Jones (Eds). Tomato Biotechnology, pp 229–238, Alan R. Liss, Inc. New York.

    Google Scholar 

  • Piechulla B., K.R. Chonoles Imlay & W. Gruissem, 1985. Plastid gene expression during fruit development in tomato. Plant Molec. Biol. 5: 373–384.

    Google Scholar 

  • Pieterse C. & M. Koornneef, 1988. Optimization of direct gene transfer in tomato. In: K.J. Puite, J.J.M. Dons, H.J. Huizing, A.J. Kool, M. Koornneef & F.A. Krens (Eds). Progress in plant protoplast Research. pp. 357–358 Kluwer, Academic Publishers, Dordrecht/Boston/London.

    Google Scholar 

  • Poustka, A. & H. Lehrach, 1986. Jumping libraries and linking libraries: the next generation of molecular tools in mammalian genetics. Trends in Genetics, 174–179.

  • Ramanna M.S., 1979. Patterns of variation of chromosomal types in Lycopersicon and Solanum. Proc. Conf. Broadening Genet. Base crops. Wageningen, Pudoc. 1978.

    Google Scholar 

  • Ramanna M.S. & R. Prakken, 1967. Structure of and homology between pachytene and somatic metaphase chromosomes of the tomato. Genetica 38: 115–133.

    Google Scholar 

  • Ramanna M.S., J. Hille & P. Zabel, 1985. Chromosome breakage fusion bridge cycle and phenotypic instability in isochromosome lines of tomato. Theor. Appl. Genet. 71: 145–152.

    Google Scholar 

  • Rick C.M., 1951. Hybrids between Lycopersicon esculentum Mill. and Solanum lycopersicoides Dun. Proc. Natl. Acad. Sci. USA 37: 741–744.

    Google Scholar 

  • Rick C.M., 1963. Differential zygotic lethality in a tomato species hybrid. Genetics 48: 1497–1507.

    Google Scholar 

  • Rick C.M., 1969. Controlled introgression of Solanum pennellii into Lycopersicon esculentum: segregation and recombination. Genetics 62: 753–768.

    Google Scholar 

  • Rick C.M., 1971. Some cytogenetic features of the genome in diploid plant species. Stadler Symposia vol. 1 and 2: 153–174.

    Google Scholar 

  • Rick, C.M., 1982. The potential of exotic germ plasm for tomato improvement. In: J.K. Vasil, W.R. Scrowcroft & Frey, K.J. (Eds). Plant improvement and somatic cell genetics. New York Academic Press.

  • Rick C.M. & D.W. Barton, 1954. Cytological and genetical identification of primary trisomics of the tomato. Genetics 39: 640–666.

    Google Scholar 

  • Rick C.M. & J.F. Fobes, 1977. Association of an allozyme with nematode resistance. Rep. Tomato Genet. Coop. 24: 25.

    Google Scholar 

  • Rick C.M., W.H. Dempsey & G.S. Khush, 1964. Further studies on the primary trisomics of the tomato. Can. J. Genet. Cytol. 6: 93–108.

    Google Scholar 

  • Rick C.M., J.W. Deverna, R.T. Chetelat & M.A. Stevens, 1986. Meiosis in sesquidiploid hybrids of Lycopersicon esculentum and Solanum lycopersicoides. Proc. Natl. Acad. Sci. USA 83: 3580–3583.

    Google Scholar 

  • Riggs C.D. & G.W. Bates, 1986. Stable transformation of tobacco by electroporation: evidence for plasmid concatenation. Proc. Natl. Acad. Sci. USA 83: 5602–5606.

    Google Scholar 

  • Rogers St.G. & H. Klee, 1987. Pathways to plant genetic manipulation employing Agrobacterium. In: Th. Hohn & J. Schell (Eds). Plant DNA Infectious Agents. pp. 179–203. Springer Verlag, Wien, New York.

    Google Scholar 

  • Schell J.M. van Montagu, M. Holsters, P. Zambryski, H. Joos, L. Herrera-Estrella, A. Depicker, J.P. Hernalsteens, H.de Greve, L. Willmitzer & J. Schröder, 1984: In: A. Kumar (Ed). Eukaryotic gene expression. pp. 141–160. Plenum Publishing Corporation, New York.

    Google Scholar 

  • Schweizer G., M. Ganal, H. Ninneman & V. Hemleben, 1988. Species-specific DNA sequences for identification of somatic hybrids between Lycopersicon esculentum and Solanum acaule. Theor. Appl. Genet. 75: 679–684.

    Google Scholar 

  • Shah D., R. Horsch, H. Klee, G. Kishore, J. Winter, N. Turner, C. Hironaka, P. Sanders, C. Gasser, S. Aykent, N. Siegel, S. Rogers & R. Fraley, 1986. Engineering herbicide tolerance in transgenic plants. Science 233: 478–481.

    Google Scholar 

  • Shahin E.A., 1985. Totipotency of tomato protoplasts. Theor. Appl. Genet 69: 235–240.

    Google Scholar 

  • Shahin E.A. & R. Spivey, 1986. A single dominant gene for Fusarium will resistance in protoplast-derived tomato plants. Theor. Appl. Genet. 73: 164–169.

    Google Scholar 

  • Sharp W.R., R.S. Raskin & H.E. Sommer, 1972. The use of nurse culture in the development of haploid clones in tomato. Planta 104: 357–361.

    Google Scholar 

  • Shepard J.F., D. Bidney, T. Barsby & R. Kemble, 1983. Genetic transfer in plants through interspecific protoplast fusion. Science 219: 683–688.

    Google Scholar 

  • Shillito R.D., M.W. Saul, J. Paszkowski, M. Mueller & I. Potrykus, 1985. High efficiency direct gene transfer to plants. Bio/technology 3: 1099–1103.

    Google Scholar 

  • Shinozaki K. et al., 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5: 2043–2049.

    Google Scholar 

  • Sibi, M., 1982. Heritable epigenic variations from in vitro tissue culture of Lycopersicon esculentum (var. Monalbo). In: E.E. Earle & Y. Demarly (Eds). Variability in plants regenerated from tissue culture, Praeger Publishers, pp. 228–244.

  • Sibi M., M. Bigarly & Y. Demarley, 1984. Increase in the rate of recombinants in tomato (Lycopersicon esculentum L.) after in vitro regeneration. Theor. Appl. Genet. 68: 317–321.

    Google Scholar 

  • Smith P.G., 1944. Embryo culture of a tomato species hybrid. Proc. Amer. Soc. Hort. Sci. 44: 413–416.

    Google Scholar 

  • Smith C.M., D. Pratt & G.A. Thompson, 1986. Increased 5-enolpyruvylshikimic acid 3-phosphate synthase activity in a glyphosate-tolerant variant strain of tomato cells. Plant Cell Report 5: 298–301.

    Google Scholar 

  • Smith C.J.S., C.F. Watson, J. Ray, C.R. Bird, P.C. Morris, W. Schuh & D. Grierson, 1988. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334: 724–726.

    Google Scholar 

  • Soller M. & J.S. Beckmann, 1983. Genetic polymorphism in varietal identification and genetic improvement. Theor. Appl. Genet 67: 25–33.

    Google Scholar 

  • Stevens M.A., 1986. Inheritance of tomato fruit quality components. Plant Breed. Rev. 4: 273–311.

    Google Scholar 

  • Stevens M.A. & C.M. Rick, 1986. Genetics and breeding. In: Atherton J.G. & Rudich J. (Eds.). The Tomato Crop. Chapman and Hall; London, New York. pp. 35–109.

    Google Scholar 

  • Tabaeizadeh Z., C. Bunnisset-Bergounioux & C. Perennes, 1984. Environmental growth conditions of protoplast source plants: effect on subsequent protoplast division in two tomato species. Physiol. Vég. 22: 223–229.

    Google Scholar 

  • Tabaeizadeh, Z., C. Perennes & C. Bergounioux, 1985. Increasing the variability of Lycopersicon peruvianum Mill by protoplast fusion with Petunia hybrida L.

  • Tan, M.L.M.C., 1987. Somatic hybridization and cybridization in some Solanaceae. Ph.D. thesis, Free University, Amsterdam, The Netherlands.

  • Tan M.L.M.C., E.M. Rietveld, G.A.M.van Marrewijk & A.J. Kool, 1987a. Regeneration of leafmesophyll protoplasts of tomato cultivars (L. esculentum): factors important for efficient protoplast culture and plant regeneration. Plant Cell Reports 6: 172–175.

    Google Scholar 

  • Tan M.L.M.C., C.M. Colijn-Hooymans, W.H. Lindhout & A.J. Kool, 1987b. A comparison of shoot regeneration from protoplasts and leaf discs of different genotypes of the cultivated tomato. Theor. Appl. Genet. 75: 105–108.

    Google Scholar 

  • Tanksley S.D., 1983. Molecular markers in plant breeding. Plant Molecular Biology Reporter 1: 3–8.

    Google Scholar 

  • Tanksley S.D. & R.A. Jones, 1979. Application of alcohol dehydrogenase allozymes in testing the purity of F1 hybrids of tomato. Hort. Science 16: 179–181.

    Google Scholar 

  • Tanksley S.D. & T.J. Rick, 1980. Isozymic gene linkage map of the tomato. Applications in genetics and breeding. Theor. Appl. Genet 57: 161–170.

    Google Scholar 

  • Tanksley S.D. & T.J. Orton (Eds) 1983. Isozymic in Plant Genetics and Breeding. Elsevier, Amsterdam.

    Google Scholar 

  • Tanksley S.D., Rick C.M. & C.E. Vallejos, 1984. Tight linkage between a malesterile locus and an enzyme marker in tomato. Theor. Appl. Genet. 68: 109–113.

    Google Scholar 

  • Tanksley S.D. & R. Bernatzky, 1987. Molecular markers for the nuclear genome of tomato. In: D.J. Nevins & R.A. Jones (Eds). Tomato Biotechnology, pp. 37–44. Alan R. Liss. Inc. New York.

    Google Scholar 

  • Tanksley, S.D., J.A. Miller, Patterson & R. Bernatzky, 1987. Molecular mapping of plant chromosomes. Proc. 18th Stadler Genet Symp. In press.

  • Tanksley S.D. & J. Hewitt, 1988. Use of molecular markers in breeding for soluble solids content in tomato-a re-examination. Theor. Appl. Genet. 75: 811–823.

    Google Scholar 

  • Thomas B.R. & D. Pratt, 1981. Efficient hybridization between Lycopersicon esculentum and L. peruvianum via embryo callus. Theor. Appl. Genet. 59: 215–219.

    Google Scholar 

  • Thomas B.R. & D. Pratt, 1982. Isolation of paraquat-tolerant mutants from tomato cell cultures. Theor. Appl. Genet. 63: 169–176.

    Google Scholar 

  • Tigchelaar E.C., 1986. Tomato breeding. In: M.J. Basset (Ed.). Breeding Vegetable crops. AVI Publishing Co. Inc. Westport Connecticut.

    Google Scholar 

  • Tumer N.E., K.M. O'Connell, R.S. Nelson, P.R. Sanders, R.N. Beachy, R.T. Fraley & D.M. Shah, 1987. Expression of alfalfa mosaic virus coat protein gene confers cross-protection in transgenic tobacco and tomato plants. EMBO J. 6: 1181–1188.

    Google Scholar 

  • Umesono K. & H. Oreki, 1987. Chloroplast gene organization in plants. Trends in Genetics 3: 281–187.

    Google Scholar 

  • Vaeek M., A. Reijnaerts, H. Höfte, S. Jansens, M.de Beuckeleer, C. Dean, M. Zabeau, M.van Montagu & J. Leemans, 1987. Transgenic plants protected from insect attack. Nature 328: 33–37.

    Google Scholar 

  • Vallejos C.E. & S.D. Tanksley, 1983. Segregation of isozyme markers and cold tolerance in an interspecific backcross of tomato. Theor. Appl. Genet 66: 241–247.

    Google Scholar 

  • Vallejos C.E., S.D. Tanksley & R. Bernatzky, 1986. Localization in the tomato genome of DNA restriction fragments containing sequences homologous to the r RNA (45S), the major chlorophyl A/B binding polypepide and the ribulose biphosphate carboxylase genes. Genetics 112: 93–105.

    Google Scholar 

  • Van Daelen R.A.J., J. Jonkers & P. Zabel, 1988. Preparation of megabase-sized tomato DNA and separation of large restriction fragments by field inversion gel electrophoresis (FIGE). Plant Molec. Biol. 12: 341–352.

    Google Scholar 

  • Van den Elzen P.J.M., J. Townsend, K.Y. Lee & J.R. Bedbrook, 1985a. Simple binary vectors for DNA transfer to plant cells. Plant Molec. Biol. 5: 149–154.

    Google Scholar 

  • Van den Elzen P.J.M., J. Townsend, K.Y. Lee & J.R. Bedbrook, 1985b. A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Molec. Biol. 5: 299–302.

    Google Scholar 

  • Van Haute E., H. Joos, M. Maes, M.van Montagu, G. Warren & J. Schell, 1983. Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of Ti-plasmids of Agrobacterium tumefaciens. EMBO J. 2: 411–517.

    Google Scholar 

  • Van der Krol A.R., P.E. Lenting, J. Veenstra, I.M.van der Meer, R.E. Koes, A.G.M. Gerats, J.N.M. Mol & A.R. Stuije, 1988. An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333: 866–869.

    Google Scholar 

  • Van Sluys M.A., J. Tempé & N. Federoff, 1987. Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota EMBO J. 6: 3881–3889.

    Google Scholar 

  • Waldron C., E.B. Murphy, J.L. Roberts, G.D. Gustafson, S.L. Armour & S.K. Malcolm, 1985. Resistance to hygromycin B. Plant Molec. Biol. 5: 103–108.

    Google Scholar 

  • Wallroth M., A.G.M. Gerats, S.G. Rogers, R.T. Fraley & R.B. Horsch, 1986. Chromosomal localization of foreign genes in Petunia hybrida. Mol. Gen. Genet. 202: 6–15.

    Google Scholar 

  • Ward B.L., R.S. Anderson & A.J. Bendick, 1981. The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25: 793–803.

    Google Scholar 

  • Wienand U. & H. Saedler, 1987. Plant transposable elements: unique stractures for gene tagging and gene cloning. pp. 205–227. In: Th. Hohn and J. Schell (Eds). Plant DNA Infectious Agents. Springer Verlag, Wien, New York.

    Google Scholar 

  • Wijbrandi J., J.G.M. Vos & M. Koornneef, 1988. Transfer of regeneration capacity from Lycopersicon peruvianum to L. esculentum by protoplast fusion. Plant Cell, Tissue and Organ Culture 12: 193–196.

    Google Scholar 

  • Yoder J.I., I. Palys, K. Alpert & M. Lassner, 1988. Ac transposition in transgenic tomato plants. Mol. Gen. Genet. 213: 291–296.

    Google Scholar 

  • Young N.D., J.C. Miller & S.D. Tanksley, 1987. Rapid chromosomal assignment of multiple genomic clones in tomato using primary trisomics. Nucl. Acids. Res. 15: 9339–9348.

    Google Scholar 

  • Young N.D., D. Zamir, M.W. Ganal & S.D. Tanksley, 1988. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics 120: 579–585.

    Google Scholar 

  • Zabel, P., D. Meyer, D. van de Stolpe, B. van der Zaal, M.S. Ramanna, M. Koornneef, F. Krens & J. Hille, 1985. Towards the construction of artificial chromosomes for tomato. In: L. van Vloten-Doting, G.S.P. Groot and T.C. Hall (Eds). Molecular form and function of the plant genome. pp. 609–624. Plenum Publ. Corp.

  • Zagorska N.A., M.D. Abadjieva & H.A. Georgiev, 1982. Inducing regeneration in anther cultures of tomatoes (Lycopersicon esculentum Mill). Compt. Rend. Acad. Bulg. Sci. 35: 97–100.

    Google Scholar 

  • Zambryski P., H. Joos, C. Genetello, J. Leemans, M.van Montagu & J. Schell, 1983. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2: 2143–2150.

    Google Scholar 

  • Zamir D., R.A. Jones & N. Kedar, 1980. Anther culture of male-sterile tomato (Lycopersicon esculentum Mill) mutants. Plant Science Lett. 17: 353–361.

    Google Scholar 

  • Zamir D., S.D. Tanksley & R.A. Jones, 1981. Genetic analysis of the origin of plants regenerated from anther tissue of Lycopersicon esculentum Mill. Plant Science Lett. 21: 223–227.

    Google Scholar 

  • Zamir D. & S.D. Tanksley, 1988. Tomato genome is comprised largely of fast-evolving, low copy-number sequences. Mol. Gen. Genet. 213: 254–261.

    Google Scholar 

  • Zapata F.J., K.C. Sink & E.C. Cocking, 1981. Callus formation from leaf mesophyll protoplasts of three Lycopersicon species: L. esculentum cv Walter L. pimpinellifolium and L. hirsutum. f. glabratum. Plant Science Lett. 23: 41–46.

    Google Scholar 

  • Zelcer A., O. Sofermans & S. Izhar, 1984. An in vitro screening for tomato genotypes exhibiting efficient shoot regeneration. J. Plant Physiol 116: 211–215.

    Google Scholar 

  • Ziv M., D. Hadary, M. Kedar & G. Ladizinsky, 1984. Lycopersicon esculentum: Trifoliate plants recovered from other cultures of heterozygous Tftf plants. Plant Cell Reports 3: 10–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hille, J., Koornneef, M., Ramanna, M.S. et al. Tomato: a crop species amenable to improvement by cellular and molecular methods. Euphytica 42, 1–23 (1989). https://doi.org/10.1007/BF00042609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042609

Key words

Navigation