Skip to main content
Log in

Estimating the importance of cyclic thermal loads in thermo-mechanical fatigue

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A method for evaluating the effect of cyclic thermal loading on crack tip stress fields is developed. In its development, advantage is taken of the periodic nature of fatigue loading and only harmonic loadings are evaluated. Formulating the problem in this way permits the extraction of time as an explicit variable and replaces its role with a dependence on the frequency of the thermal loading. The means for evaluating the effect of periodic loadings on crack tip stress fields is the stress intensity factor which is calculated from numerically defined stress and displacement fields using a path independent integral. Results obtained indicate that stress intensity factors of cracked components exposed to thermal fatigue conditions have a significant dependence on the frequency of the thermal cycle and the crack geometry. Numerical estimates for mode I thermal stress intensity have been obtained using thermal fatigue test data for a titanium alloy and can be as high as 25 percent of the critical mode I mechanical stress intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.C. Sih, Journal of Applied Mechanics 29 (1962) 587–589.

    Google Scholar 

  2. D.A. Wilson and J.R. Warren, “Thermal Mechanical Crack Growth Rate of a High Strength Nickel Base Alloy,” ASME Transactions, paper no. 85-GT-12, 30th International Gas Turbine Conference and Exhibit, Houston, TX, March 18–21, 1985.

  3. A.L. Florence and J.N. Goodier, Journal of Applied Mechanics 27 (1960) 635–639.

    Google Scholar 

  4. A.L. Florence and J.N. Goodier, International Journal of Engineering Science 1 (1963) 533–540.

    Article  Google Scholar 

  5. R. Shail, International Journal of Engineering Science 6 (1968) 685–694.

    Article  Google Scholar 

  6. B.R. Das, International Journal of Engineering Science 9 (1971) 469–478.

    Article  Google Scholar 

  7. B.R. Das, International Journal of Engineering Science 7 667–676.

  8. K. Herrmann and K. Kuemmerling, Archives of Mechanics 28 (1976) 171–188.

    Google Scholar 

  9. Y. Konishi and A. Atsumi, International Journal of Engineering Science 11 (1973) 1–7.

    Article  Google Scholar 

  10. H. Sekine, Engineering Fracture Mechanics 7 (1975) 713–729.

    Article  Google Scholar 

  11. H. Sekine, Engineering Fracture Mechanics 9 (1977)499–507.

    Article  Google Scholar 

  12. H. Sekine, Journal of Applied Mechanics 44 (1977) 637–642.

    Google Scholar 

  13. G.B. Sinclair, M. Okajima and J.H. Griffin, International Journal of Numerical Methods in Engineering 20 (1984) 999–1008.

    Google Scholar 

  14. M.E. Gurtin, International Journal of Fracture 15 (1979) R169-R170.

    Google Scholar 

  15. W.K. Wilson and I.-W. Yu, International Journal of Fracture 15 (1979) 377–387.

    Google Scholar 

  16. S. Aoki, K. Kishimoto and M. Sakata, Journal of Applied Mechanics, 48 (1981) 825–829.

    Google Scholar 

  17. S. Aoki, K. Kishimoto and M. Sakata, Engineering Fracture Mechanics 13 (1980) 841–850.

    Article  Google Scholar 

  18. S. Aoki, K. Kishimoto and M. Sakata Engineering Fracture Mechanics 16 (1982) 405–413.

    Article  Google Scholar 

  19. A.-Y. Kuo and P.C. Riccadella, International Journal of Fracture 35 (1987) 71–79.

    Google Scholar 

  20. Y.C. Fung, Foundations of Solid Mechanics, Prentice-Hall, Inc. (1965) 389.

  21. S.E. Cunningham, J.H. Griffin and G.B. Sinclair, International Journal of Fracture 33 (1987) 135–144.

    Google Scholar 

  22. W.H. Beyer (ed.), CRC Standard Mathematical Tables, 27th Ed, CRC Press Inc. (1984) 459.

  23. H. Tada, P.C. Paris and G.R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, PA (1973) 2.2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunningham, S.E., Griffin, J.H. Estimating the importance of cyclic thermal loads in thermo-mechanical fatigue. Int J Fract 47, 161–180 (1991). https://doi.org/10.1007/BF00042574

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042574

Keywords

Navigation