Skip to main content
Log in

The Green function in the theory of radiation and diffraction of regular water waves by a body

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Summary

This study is concerned with the Green function of the theory of potential flow about a body in regular (time-harmonic) water waves in deep water, that is with the linearized velocity potential of the flow due to a source of pulsating strength at a fixed position below the free surface (or a pulsating flux across the free surface) of a quiescent infinitely deep sea. An asymptotic expansion and a convergent ascending-series expansion for the Green function are obtained from two alternative complementary ‘near-field’ and ‘far-field’ single-integral representations in terms of the exponential integral. The asymptotic expansion and the ascending series allow efficient numerical evaluation of the Green function for large and small distances, respectively, from the mirror image of the singularity (submerged source or free-surface flux) with respect to the mean sea surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. V. Wehausen, The motion of floating bodies, Ann. Rev. Fluid Mech. 3 (1971) 237–268.

    Google Scholar 

  2. J. N. Newman, Marine hydrodynamics, M.I.T. Press, Cambridge, Mass., USA 1977.

    Google Scholar 

  3. N. E. Kochin, The theory of waves generated by oscillations of a body under the free surface of a heavy incompressible fluid, translated in Soc. Nav. Archit. Mar. Eng. Tech. Res. Bull. No. 1–10 (1952).

  4. T. H. Havelock, The damping of the heaving and pitching motion of a ship, Philos. Mag. 33 (1942) 666–673.

    Google Scholar 

  5. T. H. Havelock, Waves due to a floating sphere making periodic heaving oscillations, Proc. R. Soc. London A 231 (1955) 1–7.

    Google Scholar 

  6. M. D. Haskind, The oscillation of a body immersed in heavy fluid, Prikl. Mat. Mekh. 8 (1944) 287–300.

    Google Scholar 

  7. M. D. Haskind, On wave motions of a heavy fluid, Prikl. Mat. Mekh. 18 (1954) 15–26.

    Google Scholar 

  8. F. John, On the motions of floating bodies II, Commun. Pure Appl. Math. 3 (1950) 45–101.

    Google Scholar 

  9. H. C. Liu, Über die Entstehung von Ringwellen an einer Flüssigkeitsorberfläche durch unter dieser gelegene, kugelige periodische Quellensysteme, Z. Angew. Math. Mech. 32 (1952) 211–226.

    Google Scholar 

  10. R. C. Thorne, Multiple expansions in the theory of surface waves, Proc. Cambridge Philos. Soc. 49 (1953) 707–716.

    Google Scholar 

  11. R. C. MacCamy, The motion of a floating sphere in surface waves, Wave Research Lab., Univ. of Calif., Berkeley, Rep. Ser. 61 Issue 4 (1954).

    Google Scholar 

  12. J. V. Wehausen and E. V. Laitone, Surface waves, Encyclopedia of Physics, Vol. 9, Springer-Verlag Berlin (1960) 446–814.

    Google Scholar 

  13. F. Ursell, The periodic heaving motion of a half-immersed sphere, Manchester Univ., Dept. of Math., Rep. to U.S. Office of Naval Research (1963).

  14. W. D. Kim, On the harmonic oscillations of a rigid body on a free surface, J. Fluid Mech. 21 (1965) 427–451.

    Google Scholar 

  15. R. W. Yeung, A singularity-distribution method for free-surface flow problems with an oscillating body, Univ. of Calif., Berkeley, Rep. NA 73–6 (1973).

    Google Scholar 

  16. G. E. Hearn, Alternative methods of evaluating Green's function in three-dimensional ship-wave problems, J. Ship Res. 21 (1977) 89–93.

    Google Scholar 

  17. P. Guevel & J. C. Daubisse, Oscillations d'un flotteur soumis a l'action de la houle, Lecture notes E.N. S.M. Nantes, France (1978).

  18. D. Martin, Résolution numérique du problème linéarisé de la tenue à la mer, Trans. Assoc. Tech. Maritime Aéronautique (1980).

  19. F. Noblesse, On the theory of flow of regular water waves about a body, Massachusetts Institute of Technology, Dept. Ocean Eng., Rep. No. 80-2 (1980).

  20. M. J. Lighthill, On waves generated in dispersive systems by travelling forcing effects, with applications to the dynamics of rotating fluids, J. Fluid Mech. 27 (1967) 725–752.

    Google Scholar 

  21. F. Noblesse, Alternative integral representations for the Green function of the theory of ship wave resistance, J. Eng. Math. 15 (1981) 241–265.

    Google Scholar 

  22. K. W. H. Eggers, Proceedings of the International Seminar on Wave Resistance, Society of Naval Architects of Japan (1976) 399.

  23. J. J. Stoker, Water waves, Interscience Publ., New York, 1957.

    Google Scholar 

  24. M. Abramowitz & I. A. Stegun, Handbook of mathematical functions, Dover Publ., New York, 1965.

    Google Scholar 

  25. I. S. Gradshteyn & I. W. Ryzhik, Tables of integrals, series, and products, Academic Press, New York, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was sponsored by the Office of Naval Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noblesse, F. The Green function in the theory of radiation and diffraction of regular water waves by a body. J Eng Math 16, 137–169 (1982). https://doi.org/10.1007/BF00042551

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042551

Keywords

Navigation