Advertisement

Plant Molecular Biology

, Volume 23, Issue 6, pp 1285–1290 | Cite as

Co-expression of plastid chaperonin genes and a synthetic plant Rubisco operon in Escherichia coli

  • Lynn P. Cloney
  • Diana R. Bekkaoui
  • Sean M. Hemmingsen
Short Communication

Abstract

It has been suggested that lack of specialized molecular chaperone function(s) in Escherichia coli may account for the fact that although E. coli cells transformed with plant Rubisco genes synthesize the Rubisco subunit polypeptides, the active enzyme fails to assemble. If so, co-expression of plant chaperone and Rubisco genes might permit plant Rubisco assembly in E. coli. Introduction of genes encoding plant chaperonin polypeptides has been shown to enhance the capacity of E. coli to assemble active cyanobacterial Rubisco. We now report that co-expression of plant Rubisco and chaperonin genes affected the solubility and stability of Rubisco large subunit polypeptides, however, neither the assembled oligomeric protein nor Rubisco enzyme activity was detected.

Key words

molecular chaperone heterologous gene expression protein folding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amann, E, Brosius, J: ‘ATG vectors’ for regulated high-level expression of cloned genes in Escherichia coli. Gene 40: 183–190 (1985).Google Scholar
  2. 2.
    Barraclough, R, Ellis, RJ: Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intach chlorroplasts. Biochim Biophys Acta 608: 19–31 (1980).Google Scholar
  3. 3.
    Bertsch, U, Soll, J, Seetharam, R, Viitanen, PV: Identification, characterization, and DNA sequence of a functional ‘double’ groES-like chaperonin from chloroplasts of higher plants. Proc Natl Acad Sci USA 89: 8696–8700 (1992).Google Scholar
  4. 4.
    Bradley, D, van derVies, SM, Gatenby, AA: Expression of cyanobacterial and higher-plant ribulose 1,5-bisphosphate carboxylase genes in Escherichia coli. Phil Trans R Soc Lond B 313: 447–458 (1986).Google Scholar
  5. 5.
    Brodsky, JL, Hamamoto, S, Feldheim, D, Schekman, R: Reconstitution of protein translocation from solubilized yeast membranes reveals topologically distinct roles for BiP and cytosolic Hsc 70. J Cell Biol 120: 95–102 (1993).Google Scholar
  6. 6.
    Chandrasekhar, GN, Tilly, K, Woolford, C, Hendrix, R, Georgopoulos, C: Purification and properties of the groES morphogenetic protein of Escherichia coli. J Biol Chem 261: 12414–12419 (1986).Google Scholar
  7. 7.
    Chang, ACY, Cohen, SN: Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the p15A cryptic miniplasmid. J Bact 134: 1141–1156 (1978).Google Scholar
  8. 8.
    Cloney, LP, Bekkaoui, DR, Wood, MG, Hemmingsen, SM: Assessment of plant chaperonin-60 gene function in Escherichia coli. J Biol Chem 267: 23333–23336 (1992).Google Scholar
  9. 9.
    Cloney, LP, Wu, HB, Hemmingsen, SM: Expression of plant chaperonin-60 genes in Escherichia coli. J Biol Chem 267: 23327–23332 (1992).Google Scholar
  10. 10.
    Ellis, RJ: The molecular chaperone concept. Sem Cell Biol 1: 1–9 (1990).Google Scholar
  11. 11.
    Ellis, RJ: Molecular chaperones: the plant connection. Science 250: 954–959 (1990).Google Scholar
  12. 12.
    Ellis, RJ: Chaperone function: cracking the second half of the genetic code. Plant J 1: 9–13 (1991).Google Scholar
  13. 13.
    Ellis, RJ, Hemmingsen, SM: Molecular chaperones: proteins essential for the biogenesis of some macro olecular structures. Trends Biochem Sci 14: 339–342 (1989).Google Scholar
  14. 14.
    Ellis, RJ, van derVies, SM: Molecular chaperones. Annu Rev Biochem 60: 321–347 (1991).Google Scholar
  15. 15.
    Ellis, RJ, van derVies, SM, Hemmingsen, SM: The molecular chaperone concept. Biochem Soc Symp 55: 145–153 (1989).Google Scholar
  16. 16.
    Fayet, O, Louarn, J-M, Georgopoulos, C: Suppression of the Escherichia coli dnaA46 mutation by amplification of the groES and groEL genes. Mol Gen Genet 202: 435–445 (1986).Google Scholar
  17. 17.
    Gatenby, AA: Synthesis and assembly of bacterial and higher plant rubisco subunits in Escherichia coli. Photosynth Res 17: 145–157 (1988).Google Scholar
  18. 18.
    Gatenby, AA, Ellis, RJ: Chaperone function: The assembly of ribulose bisphosphate carboxylase-oxygenase. Annu Rev Cell Biol 6: 125–149 (1990).Google Scholar
  19. 19.
    Gatenby, AA, Viitanen, PV, Lorimer, GH: Chaperonin assisted polypeptide folding and assembly: implications for the production of functional proteins in bacteria. TIBTECH 8: 354–358 (1990).Google Scholar
  20. 20.
    Hanahan, D: Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580 (1983).Google Scholar
  21. 21.
    Hemmingsen, SM: The plasmid chaperonin. Sem Cell Biol 1: 47–54 (1990).Google Scholar
  22. 22.
    Hemmingsen, SM, Ellis, RJ: Purification and properties of ribulosebisphosphate carboxylase large subunit binding protein. Plant Physiol 80: 269–276 (1986).Google Scholar
  23. 23.
    Hemmingsen, SM, Woolford, C, van derVies, SM, Tilly, K, Dennis, DT, Georgopoulos, CP, Hendrix, RW, Ellis, RJ: Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330–334 (1988).Google Scholar
  24. 24.
    Houtz, RL, Stults, JT, Mulligan, RM, Tolbert, NE: Post-translational modifications in the large subunit of ribulose bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 86: 1855–1859 (1989).Google Scholar
  25. 25.
    Lee, SC, Olins, PO: Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli. J Biol Chem 267: 2849–2852 (1992).Google Scholar
  26. 26.
    Lubben, TH, Gatenby, AA, Donaldson, GK, Lorimer, GH, Viitanen, PV: Identification of a groES-like chaperonin in mitochondria that facilitates protein folding. Proc Natl Acad Sci USA 87: 7683–7687 (1990).Google Scholar
  27. 27.
    Martel, R, Cloney, LP, Pelcher, LE, Hemmingsen, SM: Unique composition of plastid chaperonin-60: α and β polypeptide-encoding genes are highly divergent. Gene 94: 181–187 (1990).Google Scholar
  28. 28.
    Miziorko, HM, Lorimer, GH: Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annu Rev Biochem 52: 507–535 (1983).Google Scholar
  29. 29.
    Morell, MK, Paul, K, Kane, HJ, Andrews, TJ: Rubisco: Maladapted or Misunderstood? Aust J Bot 40: 431–441 (1992).Google Scholar
  30. 30.
    Musgrove, JE, Johnson, RA, Ellis, RJ: Dissociation of the ribulosebisphosphate-carboxylase large-subunit binding protein into dissimilar subunits. Eur J Biochem 163: 529–534 (1987).Google Scholar
  31. 31.
    Roy, H, Nierzwicki-Bauer, SA: RuBisCO: Genes, structure, assembly, and evolution. In: Bogorad, L, Vasil, IK (eds) The Photosynthetic Apparatus: Molecular Biology and Operation, pp. 347–364, Academic Press, London (1991).Google Scholar
  32. 32.
    van derVies, SM, Bradley, D, Gatenby, A: Assembly of cyanobacterial and higher plant ribulose bisphosphate carboxylase subunits into functional homologous and heterologous enzyme molecules in Escherichia coli. EMBO J 5: 2439–2444 (1986).Google Scholar
  33. 33.
    Vierling, E: The roles of heat shock proteins in plants. Annu Rev Plant Physiol 42: 579–620 (1991).Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Lynn P. Cloney
    • 1
  • Diana R. Bekkaoui
    • 1
  • Sean M. Hemmingsen
    • 1
  1. 1.Plant Biotechnology InstituteNational Research Council CanadaSaskatoonCanada

Personalised recommendations