Advertisement

Plant Molecular Biology

, Volume 23, Issue 6, pp 1243–1254 | Cite as

Molecular cloning and evolutionary analysis of the calcium-modulated contractile protein, centrin, in green algae and land plants

  • Debashish Bhattacharya
  • Jutta Steinkötter
  • Michael Melkonian
Research Article

Abstract

Centrin (= caltractin) is a ubiquitous, cytoskeletal protein which is a member of the EF-hand superfamily of calcium-binding proteins. A centrin-coding cDNA was isolated and characterized from the prasinophyte green alga Scherffelia dubia. Centrin PCR amplification primers were used to isolate partial, homologous cDNA sequences from the green algae Tetraselmis striata and Spermatozopsis similis. Annealing analyses suggested that centrin is a single-copy-coding region in T. striata and S. similis and other green algae studied. Centrin-coding regions from S. dubia, S. similis and T. striata encode four colinear EF-hand domains which putatively bind calcium. Phylogenetic analyses, including homologous sequences from Chlamydomonas reinhardtii and the land plant Atriplex nummularia, demonstrate that the domains of centrins are congruent and arose from the two-fold duplication of an ancestral EF hand with Domains 1+3 and Domains 2+4 clustering. The domains of centrins are also congruent with those of calmodulins demonstrating that, like calmodulin, centrin is an ancient protein which arose within the ancestor of all eukaryotes via gene duplication. Phylogenetic relationships inferred from centrin-coding region comparisons mirror results of small subunit ribosomal RNA sequence analyses suggesting that centrin-coding regions are useful evolutionary markers within the green algae.

Key words

calcium-binding protein centrin EF hand evolution green algae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baum, P, Furlong, C, Byers, B: Yeast gene required for spindle pole body duplication: Homology of its product with Ca2+-binding proteins. Proc Natl Acad Sci USA 83: 5512–5516 (1986).Google Scholar
  2. 2.
    Bhattacharya, D, Stickel, SK, Sogin, ML: Molecular phylogenetic analysis of actin genic regions from Achlya bisexualis (Oomycota) and Costaria costata (Chromophyta). J Mol Evol 33: 525–536 (1991).Google Scholar
  3. 3.
    Chisholm, D: A convenient moderate-scale procedure for obtaining DNA from bacteriophage lambda. Biotechniques 7: 21–23 (1989).Google Scholar
  4. 4.
    Coling, DE, Salisbury, JL: Characterization of the calcium-binding contractile protein centrin from Tetraselmis striata (Pleurastrophyceae). J Protozool 39: 385–391 (1992).Google Scholar
  5. 5.
    Dassler, CL, Scott, J, Salisbury, JL: Centrin in ‘primitive’ eukaryotes: centrin homologues of the rhodophyta. J Cell Biol 111: 182a (1990).Google Scholar
  6. 6.
    Davis, TN, Urdea, MS, Masiarz, FR, Thorner, J: Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell 47: 423–431 (1986).Google Scholar
  7. 7.
    Fasman, GD: Protein conformational prediction. Trends Biochem Sci 14: 295–299 (1989).Google Scholar
  8. 8.
    Felsenstein, J: Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791 (1989).Google Scholar
  9. 9.
    Felsenstein, J: PHYLIP Manual Version 3.4. Department of Genetics, University of Washington, Seattle, WA (1990).Google Scholar
  10. 10.
    Hillis, DM, Larson, A, Davis, SK, Zimmer, EA: Nucleic acids III: sequencing. In: Hillis, DM, Moritz, C (eds) Molecular Systematics, pp. 318–370. Sihauer, Sunderland (1990).Google Scholar
  11. 11.
    Höhfeld, I, Otten, J, Melkonian, M: Contractile eukaryotic flagella: centrin is involved. Protoplasma 147: 16–24 (1988).Google Scholar
  12. 12.
    Hu, A-L, D'Alessio, JM, Gerard, GF, Kullman, J: Superscript RT-catalyzed first strand synthesis and the amplification of α-actin mRNA using the polymerase chain reaction. Focus 13: 6–29 (1991).Google Scholar
  13. 13.
    Huang, B, Mengersen, A, Lee, VD: Molecular cloning of cDNA for caltractin, a basal body-associated Ca2+-binding protein: homology in its protein sequence with calmodulin and the yeast CDC31 gene product. J Cell Biol 107: 133–140 (1988).Google Scholar
  14. 14.
    Jukes, TH, Cantor, CR: Evolution of protein molecules. In: Munoro, HN (ed) Manual of Protein Metabolism, pp. 21–132. Academic Press, New York (1969).Google Scholar
  15. 15.
    Kink, JA, Maley, ME, Preston, RR, Ling, K-Y, Waller-Friedmann, MA, Saimi, Y, Kung, C: Mutations in Paramecium calmodulin indicate functional diffences between the C-terminal and N-terminal lobes in vivo. Cell 62: 165–174 (1990).Google Scholar
  16. 16.
    Koutoulis, A, McFadden, GI, Wetherbee, R: Spinescale reorientation in Apedinella radians (Pedinellales, Chrysophyceae): the microarchitecture and immunocytochemistry of the associated cytoskeleton. Protoplasma 147: 25–41 (1988).Google Scholar
  17. 17.
    Lee, VD, Huang, B: Caltractin: A basal body-associated calcium-binding protein in Chlamydomonas. In: O'Day, DH (ed) Calcium as an Intracellular Messenger in Eucaryotic Microbes, pp. 245–257. American Society for Microbiology, Washington (1990).Google Scholar
  18. 18.
    LeJohn, HB: Structure and expression of fungal calmodulin gene. J Biol Chem 264: 19366–19372 (1989).Google Scholar
  19. 19.
    Maniatis, T, Fritsch, EF, Sambrook, J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (1982).Google Scholar
  20. 20.
    Martindale, VE, Salisbury, JL: Phosphorylation of algal centrin is rapidly responsive to changes in the external milieu. J Cell Sci 96: 395–402 (1990).Google Scholar
  21. 21.
    Medlin, L, Elwood, HJ, Stickel, S, Sogin, ML: The characterization of enzymatically amplified eukaryotic 16S-like rRNA regions. Gene 71: 491–499 (1988).Google Scholar
  22. 22.
    Melkonian, M: Ultrastructural aspects of basal body associated fibrous structures in green algae: A critical review. BioSystems 12: 85–104 (1980).Google Scholar
  23. 23.
    Melkonian, M, Preisig, HR: A light and electron microscopy copy study of Scherffelia dubia, a new member of the scaly green flagellates (Prasinophyceae). Nord J Bot 6: 235–256 (1986).Google Scholar
  24. 24.
    Melkonian, M, Beech, PL, Katsaros, C, Schulze, D: Centrin-mediated cell motility in algae. In: Melkonian, M (ed) Algal Cell Motility, pp. 179–221. Chapman and Hall, New York (1992).Google Scholar
  25. 25.
    Moncrief, ND, Kretsinger, RH, Goodman, M: Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J Mol Evol 30: 522–562 (1990).Google Scholar
  26. 26.
    Nakayama, S, Moncrief, ND, Kretsinger, RH: Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. J Mol Evol 34: 416–448 (1992).Google Scholar
  27. 27.
    Okayama, H, Kawaichi, M, Brownstein, M, Lee, F, Yokota, T, Aria, K: High efficiency cloning of full-length cDNA; construction and screening of cDNA expression libraries for mammalian cells. Meth Enzymol 154: 3–28 (1987).Google Scholar
  28. 28.
    Saitou, N, Nei, M: The Neighbor-Joining method: A new method for reconstructing phylogenetic trees. Mol Bio Evol 4: 406–425 (1987).Google Scholar
  29. 29.
    Salisbury, JL, Floyd, GL: Calcium-induced contraction of the rhizoplast of a quadriflagellate green alga. Science 202: 975–977 (1978).Google Scholar
  30. 30.
    Salisbury, JL, Baron, A, Surek, B, Melkonian, M: Striated flagellar roots: Isolation and partial characterization of a calcium-modulated contractile organelle. J Cell Biol 99: 962–970 (1984).Google Scholar
  31. 31.
    Sanger, F, Nicklen, S, Coulson, AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).Google Scholar
  32. 32.
    Schulze, D, Robenek, H, McFadden, GI, Melkonian, M: Immunolocalization of a Ca2+-modulated contractile protein in the flagellar apparatus of green algae: the nucleus-basal body connector. Eur J Cell Biol 45: 51–61 (1987).Google Scholar
  33. 33.
    Sogin, ML: The phylogenetic significance of sequence diversity and length variations in eukaryotic small subunit ribosomal RNA coding regions. Wistar Symp Ser 4: 175–188 (1991).Google Scholar
  34. 34.
    Swofford, DL: PAUP Version 3.OS. Illinois Natural History Survey, Champaign, IL (1991).Google Scholar
  35. 35.
    Takeda, T, Yamamoto, M: Analysis and in vivo disruption of the gene coding for calmodulin in Schizosaccharomyces pombe. Proc Natl Acad Sci USA 84: 3580–3584 (1987).Google Scholar
  36. 36.
    Wawrzynczak, EJ, Perham, RN: Isolation and nucleotide sequence of a cDNA encoding human calmodulin. Biochem Int 9: 177–185 (1984).Google Scholar
  37. 37.
    Wolfrum, U: Distribution of F-actin in the compound eye of the blowfly, Calliphora erytrocephala (Diptera, Insecta). Cell Tissue Res 266: 231–238 (1991).Google Scholar
  38. 38.
    Wright, RL, Salisbury, J, Jarvik, JW: A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation. J Cell Biol 101: 1903–1912 (1985).Google Scholar
  39. 39.
    Wright, RL, Adler, SA, Spanier, JG, Jarvik, JW: Nucleus-basal body connector in Chlamydomonas: Evidence for a role in basal body segregation and against essential roles in mitosis or in determining cell polarity. Cell Motil Cytoskel 14: 516–526 (1989).Google Scholar
  40. 40.
    Zhu, J-K, Bressan, RA, Hasegawa, PM: an Atriplex nummularia cDNA with sequence relatedness to the algal caltractin gene. Plant Physiol 99: 1734–1735 (1992).Google Scholar
  41. 41.
    Zimmer, WE, Schloss, JA, Silflow, CD, Youngblom, J, Watterson, DM: Structure, organization, DNA sequence, and expression of the calmodulin gene. J Biol Chem 263: 19370–19383 (1988).Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Debashish Bhattacharya
    • 1
  • Jutta Steinkötter
    • 1
  • Michael Melkonian
    • 1
  1. 1.Botanisches InstitutUniversität zu KölnKöln 41Germany

Personalised recommendations