Advertisement

Plant Molecular Biology

, Volume 23, Issue 6, pp 1199–1210 | Cite as

Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA

  • Christoph Dehio
  • Klaus Grossmann
  • Jeff Schell
  • Thomas Schmülling
Research Article

Abstract

The rolA gene of the TL-DNA of Agrobacterium rhizogenes Ri-plasmid plays a major role in establishing the hairy root syndrome in transgenic plants. Transgenic tobacco plants (Nicotiana tabacum L.) expressing constitutively the rolA gene under the transcriptional control of the 35S RNA promoter show pronounced phenotypical alterations. P35S-rolA transgenic tobacco plants are characterized by stunted growth, dark green wrinkled leaves with an altered length-to-width ratio, condensed inflorescences, retarded onset of flowering, a reduced number of flowers and shortened styles. To investigate whether the pleiotropic alterations of growth and development are linked to an altered hormonal status we have compared the immunoreactive content of indole-3-acetic acid, cytokinins, abscisic acid, gibberellin and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) of seedlings and different tissues of P35S-rolA transgenic plants, transgenic plants expressing the rolA gene under control of its own phloem-specific promoter and wild-type plants. Multiple tissue-specific alterations of phytohormone concentrations are the consequence of rolA gene activity. Changes of phytohormonal content can explain part of the rolA-induced phenotypic alterations. Most strikingly, in young and fully developed leaves of rolA and P35S-rolA transgenic clones a 40–60% reduction of immunoreactive gibberellin A1 was found, as compared to wild-type leaves. Treatment of wild-type tobacco plants with inhibitors of gibberellin biosynthesis phenotypic alterations similar to those of rolA transgenic plants. This suggests that the reduction of gibberellic acid content is indirectly but causally involved in rolA-induced alterations of stem elongation and planar leaf blade growth.

Key words

Agrobacterium growth retardants plant hormones Ri plasmid transgenic tobacco 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atzorn, R, Weiler, EW: The immunoassay of gibberellins. I. Radioimmuneassay for gibberellins A1, A3, A4, A7, A9, and A20. Planta 159: 1–6 (1983).Google Scholar
  2. 2.
    Boyer, HW, Roulland-Dussoix, D: A complementation analysis of the restriction and modification in Escherichia coli. J Mol Biol 41: 459–468 (1969).Google Scholar
  3. 3.
    Burg, SP: Ethylene in plant growth. Proc Natl Acad Sci USA 70: 591–597 (1973).Google Scholar
  4. 4.
    Burtin, D, Martin-Tanguy, J, Tepfer, D: α-Difluoromethylornithine, a specific, irreversible inhibitor of putrescine biosynthesis, induces a phenotype in tobacco similar to that ascribed to the root-inducing, left-hand transferred DNA of Agrobacterium rhizogenes. Plant Physiol 95: 461–463 (1991).Google Scholar
  5. 5.
    Cardarelli, M, Mariotti, D, Pomponi, M, Spano, L, Capone, I, Costantino, P: Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 209: 475–480 (1987).Google Scholar
  6. 6.
    Eberle, J, Arnscheidt, A, Klix, D, Weiler, EW: Monoclonal antibodies to plant growth regulators. III. Zeatinriboside and dihydrozeatinriboside. Plant Physiol 81: 516–521 (1986).Google Scholar
  7. 7.
    Estruch, JJ, Schell, J, Spena, A: The protein encoded by the rolB plant encogene hydrolyses indole glucosides. EMBO J 10: 3125–3128 (1991).Google Scholar
  8. 8.
    Estruch, JJ, Chriqui, D, Grossmann, K, Schell, J, Spean, A (1991) The plant oncogene rolC is responsible for the release of cytokinins from glucoside-conjugates. EMBO J 10: 2889–2896.Google Scholar
  9. 9.
    Grossmann, K: Plant growth retardants as tools in physiological research. Physil Plant 78: 640–648 (1990).Google Scholar
  10. 10.
    Grossmann, K, Kwiatkowski, J, Häuser, C: Phytohormonal changes in greening and senescing intact cotyledons of oilseed rape and pumpkin: influence of growth retardant BAS111.. W. Physiol Plant 83: 544–550 (1991).Google Scholar
  11. 11.
    Grossmann K, Siefert F, Kwiatkowski J, Schraudner M, Langebartels C, Sandermann H: Inhibition of ethylene production in sunflower cell suspensions by the plant growth retardant BAS.. W: Possible relations to changes in polyamine and cytokinin contents. J Plant Growth Regul 12 in press (1993).Google Scholar
  12. 12.
    Guilley, H, Dudley, RK, Jonard, G, Balazs, E, Richards, KE: Transcription of cauliflower mosaic virus DNA: Detection of promoter sequences, and characterization of transcripts. Cell 30: 763–773 (1982).Google Scholar
  13. 13.
    Horsch, RB, Fry, JE, Hoffmann, NL, Eichhotz, D, Rogers, SG, Fraley, RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).Google Scholar
  14. 14.
    Jouanin, L, Vilaine, F, Tourneur, J, Tourneur, C, Pautot, V, Muller, JF, Caboche, M: Transfer of a 4.3 kb fragment of the TL-DNA of Agrobacterium rhizogenes strain A4 confers the pRi transformed phenotype to regenerated tobacco plants. Plant Science 53: 53–63 (1987).Google Scholar
  15. 15.
    Koncz, C, Schell, J: The promoter of the TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204: 383–396 (1986).Google Scholar
  16. 16.
    Lizada, MCC, Yang, FS: A simple and sensitive assay for 1-aminocyclopropane-carboxylic acid. Anal Biochem 100: 140–145 (1979).Google Scholar
  17. 17.
    Maliga, P, Sz.-Breznovitis, A, Morton, L: Streptomycin-resistant plants from callus culture from haploid tobacco. Nature 347: 737–743 (1973).Google Scholar
  18. 18.
    Maurel, C, Barbier-Brygoo, H, Spena, A, Tempe, J, Guern, J: Single rol genes from Agrobacterium rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum. Plant Physiol 97: 212–216 (1991).Google Scholar
  19. 19.
    Mertens, R, Deus-Neumann, B, Weiler, EW: Monoclonal antibodies for the detection and quantitation of the endogenous plant growth regulator abscisic acid. FEBS Lett 160: 269–272 (1983).Google Scholar
  20. 20.
    Mertens, R, Eberle, J, Arnscheidt, A, Ledebour, A, Weiler, EW: Monoclonal antibodies to plant growth regulators. II. Indole-3-acetic acid. Planta 166: 389–393 (1985).Google Scholar
  21. 21.
    Neill, SJ, Horgan, R: Abscisic acid and related compounds. In: Rivier, L, Crozier, A (eds) Principles and Practice of Plant Hormone Analysis, vol 1, pp. 111–167 Academic Press London (1987).Google Scholar
  22. 22.
    Nilsson, O, Crozier, A, Schmülling, T, Sandberg, G, Olsson, O (1993) Indole-3-acetic acid homeostasis in transgenic plants expressing the Agrobacterium rhizogenes rolB gene. Plant J 3: 681–689.Google Scholar
  23. 23.
    Nilsson, O, Moritz, T, Imbault, N, Sandberg, G, Olsson, O: Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA. Plant Physiol 102: 363–371 (1993).Google Scholar
  24. 24.
    Romano, CP, Hein, MB, Klee, HJ: Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Devel 5: 438–446 (1991).Google Scholar
  25. 25.
    Romano, CP, Cooper, ML, Klee, HJ: Uncoupling auxin and ethylene effects in transgenic tobacco and arabidopsis plants. Plant Cell 5: 181–189 (1993).Google Scholar
  26. 26.
    Sambrook, J, Fritsch, EF, Maniatis, T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).Google Scholar
  27. 27.
    Sargent, JA, Atack, AV, Osborne, DJ: Orientation of cell growth in the etiolated pea stem. Effect of ethylene and auxin on cell wall deposition. Planta 109: 185–192 (1973).Google Scholar
  28. 28.
    Sauerbrey, EK, Grossmann, K, Jung, J: Is ethylene involved in the regulation of growth of sunflower cell suspension culture? J Plant Physiol 127: 471–479 (1987).Google Scholar
  29. 29.
    Scharf, SJ, Horn, GT, Ehrlich, HA: Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Science 233: 1076–1078 (1986).Google Scholar
  30. 30.
    Schmülling T: Studien zum Einfluss der rol A, B und C Gene der TL-DNA von Agrobacterium rhizogenes auf die Pflanzenentwicklung. Ph.D. thesis, Universität Köln (1988).Google Scholar
  31. 31.
    Schmülling, T, Schell, J, Spena, A: Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7: 2621–2629 (1988).Google Scholar
  32. 32.
    Schmülling, T, Schell, J, Spena, A: Promoters of the rol A, B, and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants. Plant Cell 1: 665–670 (1989).Google Scholar
  33. 33.
    Schmülling, T, Fladung, M, Grossmann, K, Schell, J: Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of Agrobacterium rhizogenes T-DNA. Plant J 3: 371–382 (1993).Google Scholar
  34. 34.
    Simon, R, Preifer, U, Pühler, A: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio Technology 1: 784–791 (1983).Google Scholar
  35. 35.
    Singkar, VP, Pythoud, F, White, FF, Nester, EW, Gordon, MP: rol A locus of the Ri plasmid directs developmental abnormalities in transgenic plant. Genes Devel 2: 688–697 (1988).Google Scholar
  36. 36.
    Slightom, JL, Durand-Tardif, M, Jouanin, L, Tepfer, D: Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid: identification of open reading frames. J Biol Chem 261: 108–121 (1986).Google Scholar
  37. 37.
    Spena, A, Schmülling, T, Koncz, C, Schell, J: Independent and synergistic activities of the rol A, B, and C loci in stimulating abnormal growth in plants. EMBO J 6: 3891–3899 (1987).Google Scholar
  38. 38.
    Spena, A, Estruch, JJ, Prinsen, E, Nacken, W, VanOnckelen, H, Sommer, H: Anther-specific expression of the rolB gene of Agrobacterium rhizogenes increases IAA content in anthers and alters anther development and whole flower growth. Theor Appl Genet 84: 520–527 (1992).Google Scholar
  39. 39.
    Sun, LJ, Monneuse, MO, Martin-Tanguy, J, Tepfer, D: Changes in flowering and the accumulation of polyamines and hhdroxycinnamic acid-polyamine conjugates in tobacco plants transformed by the rolA locus from the TL-DNA of Agrobacterium rhizogenes. Plant Sci 80: 145–156 (1991).Google Scholar
  40. 40.
    Tepfer, D: Transformation of several species of higher plants by Agrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell 37: 959–967 (1984).Google Scholar
  41. 41.
    Trewavas, AJ: Growth substance sensitivity: the limiting factor in plant development. Physiol Plant 55: 60–72 (1982).Google Scholar
  42. 42.
    Vansuyt, G, Vilaine, F, Tepfer, M, Rossignol, M: rolA modulates the sensitivity to auxin of the proton trans-location catalyzed by the plasma membrane H+-ATPase in transformed tobacco. FEBS Lett 298: 89–92 (1992).Google Scholar
  43. 43.
    Vieira, J, Messing, J: Production of single-stranded plasmid DNA. Meth Enzymol 153: 3–11 (1988).Google Scholar
  44. 44.
    Weiler, EW, Spanier, K: Phytohormones in the formation of crown gall tumors. Planta 153: 326–337 (1981).Google Scholar
  45. 45.
    Weiler, EW, Eberle, J, Mertens, R, Atzorn, R, Feyerabend, M, Jourdan, PS, Arnscheidt, A, Wieczorek, U: Antisera- and monoclonal antibody-based immunoassay of plant hormones. Society for Experiental Botany, Seminar Series 29, pp. 27–58. Cambridge University Press, Cambridge (1986).Google Scholar
  46. 46.
    White, FF, Taylor, BH, Huffman, GA, Gordon, MP, Nester, EW: Molecular and genetic analysis of the transferred DNA regions of the root inducing plasmids of Agrobacterium rhizogenes. J Bact 164: 33–44 (1985).Google Scholar
  47. 47.
    Yang, SF, Hoffman, NE: Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35: 155–189 (1984).Google Scholar
  48. 48.
    Zambryski, P, Tempé, J, Schell, J: Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56: 193–201 (1989).Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Christoph Dehio
    • 1
  • Klaus Grossmann
    • 2
  • Jeff Schell
    • 1
  • Thomas Schmülling
    • 3
  1. 1.Max-Planck-Institut für ZüchtungsforschungKölnGermany
  2. 2.Landwirtschaftliche Versuchsstation der BASFLimburgerhofGermany
  3. 3.Lehrstuhl für Allgemeine GenetikUniversität TübingenTübingenFRG

Personalised recommendations