Skip to main content
Log in

Boundary element analysis of CT specimens with straight and curved crack fronts

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Stress intensity factors (SIFs) are computed by the boundary element method for standard compact tension specimens. Traction singular elements are employed along the crack front which enable SIFs not only to be extrapolated from crack opening displacements but also to be directly obtained as problem unknowns. Both straight and curved crack fronts are analyzed: the latter are taken to be in the form of circular arcs with curvature radii ranging from 3.145 to 0.707 the specimen thickness. The influence of Poisson's ratio on the stress intensity factor distribution is also investigated.

Résumé

On calcule les facteurs d'intensité des contraintes pour les éprouvettes normalisées de traction compactes par un méthode d'analyse d'éléments aux limites. Le long du front de fissure, on utilise des éléments singuliers en traction, ce qui permet non seulement d'extrapoler les facteurs d'intensité des contraintes à partir des déplacements d'ouverture de la fissure, mais aussi de les obtenir directement en tant qu'inconnues du problème. On analyse aussi bien les fronts de fissure droits que courbes, ces derniers étant considérés comme des arcs de cercle dont le rayon varie entre 0.3145 et 0.707 fois l'épaisseur de l'éprouvette. On étudie également l'influence du modèle de Poisson sur la distribution du facteur d'intensité des contraintes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.G. DeLorenzi, Computer and Structure 13 (1981) 613–621.

    Article  Google Scholar 

  2. M. Kuna, International Journal of Fracture 19 (1982) R63–67.

    Article  Google Scholar 

  3. J.M. Bloom and D.B. Van Fossen, International Journal of Fracture 12 (1976) RCR 161–163.

    Google Scholar 

  4. K. Kathiresan, Ph.D. dissertation, Georgia Institute of Technology, Atlanta (1976).

    Google Scholar 

  5. A.A. Tseng and J.T. Berry, Nuclear Engineering and Design 54 (1979) 91–95.

    Article  Google Scholar 

  6. T.H.H. Pian and K. Moriya, in Numerical Methods in Applied Mechanics, Swansea University Press, Swansea, UK (1978) 363–373.

    Google Scholar 

  7. D.M. Tracey, Nuclear Engineering and Design 26 (1974) 282–290.

    Article  Google Scholar 

  8. W.S. Blackburn and T.K. Hellen, International Journal of Fracture 16 (1980) 411–429.

    Article  Google Scholar 

  9. I.S. Raju and J.C. Newman, Three-Dimensional Finite Element Analysis of Finite Thickness Fracture Specimens, NASA Technical Note D-8414 (1977).

  10. D.N. Fenner and M.J. Abdul Mihsein, International Journal of Fracture 25 (1984) 121–131.

    Google Scholar 

  11. O.L. Towers and A.P. Smith, International Journal of Fracture 25 (1984) R43-R48.

    Google Scholar 

  12. A.P. Smith, O.L. Towers and I.J. Smith, in Proceeding of 3rd International Conference on Numerical Methods in Fracture Mechanics, Swansea (1984) 205–221.

  13. K.H. Lee, The Effect of Crack Front Curvature on Stress Intensity Factor in Compact Tension Specimens Using the Boundary Integral Equation Methods, The Welding Institute, Abington, Cambridgeshire, England, (July 1979).

    Google Scholar 

  14. Y. Yamamoto and Y. Sumi, International Journal of Fracture 14 (1978) 17–38.

    Article  Google Scholar 

  15. G. Yagawa and T. Nishioka, International Journal for Numerical Methods in Engineering 12 (1978) 1295–1310.

    Google Scholar 

  16. J. Alam and A. Mendelson, International Journal of Fracture 23 (1983) 317–324.

    Article  Google Scholar 

  17. J.J. McGowan, in Proceedings of X Southeastern Conference on Theoretical and Applied Mechanics (1980) 415–433.

  18. M.A. Schroedl and C.W. Smith, in Fracture Mechanics, ASTM STP 560, (1973) 69–80.

  19. D.B. Barker and M.E. Fourney, Experimental Mechanics 17 (1977) 241–247.

    Google Scholar 

  20. E.S. Folias, International Journal of Fracture 16 (1980) 335–348.

    Article  Google Scholar 

  21. J.P. Benthem, International Journal of Solids and Structures 13 (1977) 479–492.

    Article  Google Scholar 

  22. Z.P. Bažant and L.F. Estenssoro, International Journal of Solids and Structures 17 (1979) 405–426.

    Google Scholar 

  23. J.S. Solecki and J.L. Swedlow, in Fracture Mechanics: Sixteenth Symposium, ASTM STP 868, M.F. Kanninen and A.T. Hopper (eds.), American Society for Testing and Materials, Philadelphia (1985) 535–553.

    Google Scholar 

  24. C.L. Tan and R.T. Fenner, Proceedings of the Royal Society of London A 369 (1979) 243–260.

    Google Scholar 

  25. M.L. Luchi and A. Poggialini, in Proceedings of the 5th International Conference on Boundary Elements, Hiroshima, Japan (1983) 461–470.

  26. T.A. Cruse, International Journal of Solids and Structures 5 (1969) 1259–1274.

    Article  Google Scholar 

  27. F.J. Rizzo, Quarterly of Applied Mathematics 25 (1967) 83–95.

    Google Scholar 

  28. C.A. Brebbia, The Boundary Element Method for Engineers, Pentech Press, London (1978).

    Google Scholar 

  29. J.C. Lachat and J.O. Watson, International Journal for Numerical Methods in Engineering 10 (1976) 991–1005.

    Google Scholar 

  30. E399-83, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, Annual Book of ASTM Standards (1983).

  31. M.L. Luchi and S. Rizzuti, International Journal for Numerical Methods in Engineering, to appear.

  32. J. Eftis, N. Subramonian and H. Liebowitz, Engineering Fracture Mechanics (1977) 189–210.

  33. T.A. Cruse, International Journal of Fracture Mechanics 6 (1970) RCR 326–328.

    Article  Google Scholar 

  34. O.L. Towers, Journal of Testing and Evaluation 11 (1983) 34–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luchi, M.L., Rizzuti, S. Boundary element analysis of CT specimens with straight and curved crack fronts. Int J Fract 34, 23–40 (1987). https://doi.org/10.1007/BF00042122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042122

Keywords

Navigation