Skip to main content
Log in

One-dimensional theories of motion for beams

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Using Gurtin's variational principle, a rational method for deducing the approximate one-dimensional theories of Medick from three-dimensional elasticity is presented.

By using suitable unknowns, matrix equations are obtained; these exhibit a hyperbolic structure.

Résumé

Dans le cadre des schématisations de Medick, on présente une méthode permettant de déduire de la théorie tridimensionelle des théories approchées à une dimension de plus en plus fines.

Après un choix convenable des inconnues, on obtient les équations matricielles du problème qui mettent en évidence une structure de système hyperbolique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green, A. E. and Naghdi, P. M., Non-isothermal theory of rods, plates and shells, Int. J. Solids Structures (1970), 209–244.

  2. Antman, S. S., The theory of rods, Handbuch der Physik, Vol. VI/a/2, Springer (1972).

  3. Volterra, E., Second approximation of method of internal constraints and its applications, Int. J. Mech. Sci. 3 (1961), 47–67.

    Article  Google Scholar 

  4. Mindlin, R. D. and Mac Niven, H. D., Axially Symmetric Waves in Elastic Rods, Journal of Applied Mechanics 27 (1960), 145–151.

    Google Scholar 

  5. Medick, M. A., One-dimensional theories of wave propagation and vibrations in elastic bars of rectangular cross-section, Journal of Applied Mechanics (1966), 489–495.

  6. Warner, W. H., The dynamical equations for beams-Developments in Mechanics, Vol. 3 part 2, Proc. of the 9th Midwestern Mechanics Conference, University of Wisconsin (Madison), 16–18 August 1965, edited by Huang, T. C. and Johnson Jr, M. W., Wiley (New York), 1965.

    Google Scholar 

  7. Gurtin, M. E., Variational Principles for linear Elastodynamics, Archive for Rational Mechanics and Analysis, 16 (1964), 34–50.

    Article  Google Scholar 

  8. Gurtin, M. E., The linear theory of elasticity, Handbuch der Physik, Vol. VI/a/2 (Mechanics of Solids II), Springer (1972).

  9. Yu, Y. Y., Generalized Hamilton's Principle and variational equation of motion in nonlinear elasticity theory, with application to plate theory, J. Acoust. Soc. Am. 36 (1964), 111–120.

    Google Scholar 

  10. Nickel, R. E. and Socor, G. A., Convergence of consistently derived Timoshenko beam finite elements, Int. J. for Num. Methods in Eng. 5 (1972), 243–253.

    Google Scholar 

  11. Germain, P., The method of virtual power in continuum mechanics, Part 2: Microstructure, SIAM J. of Applied Math., 25 (1973), 556–575.

    Google Scholar 

  12. Germain, P., La méthode des puissances virtuelles en mécanique des milieux continus. Journal de Mécanique, 12 (1973), 235–274.

    Google Scholar 

  13. Biot, M. A., Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena, J. of Appl. Phys. 25 (1954), 1385–1391.

    Google Scholar 

  14. Gamby, D., Sur la propagation d'ondes dans les solides pour des schémas à une dimension, Thèse d'Etat, Université de Poitiers (1975).

  15. Gamby, D., Schématisations à une dimension du mouvement des milieux curvilignes, C.R.A.S. Paris Vol. 278 (11 Mars 1974), Série B, p. 437–440.

    Google Scholar 

  16. Kreiss, H. O., Über implizite Differenzenmethoden für partielle Differentialgleichungen, Numerische Mathematik 5 (1963), 24–47.

    Google Scholar 

  17. Medick, M. A., Extensional waves in elastic bars of rectangular cross-section, J. Acoust. Soc. Am. 43 (1968), 152–161.

    Google Scholar 

  18. Mindlin, R. D. and Mac Niven, H. D., Axially symmetric waves in elastic rods, Journal of Applied Mechanics, 27 (1960), 145–151.

    Google Scholar 

  19. Leitman, M. J., Variational principles in the linear dynamic theory of viscoelasticity, Quart. Appl. Math. 24 (1966), 37–46.

    Google Scholar 

  20. Gamby, D., Solution of one-dimensional impact problems, Mech. Res. Comm. 2 (1975), 131–135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamby, D. One-dimensional theories of motion for beams. J Elasticity 7, 353–367 (1977). https://doi.org/10.1007/BF00041728

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041728

Keywords

Navigation